

Doc. Name:The analog input module connected to a sensorDoc. Code:134A-P-04ADS-APN001-EN

Ver.: 00

Topic: The analog input module connected to a sensor

Applicable model	All analog input modules (DVP04AD-S, DVP06XA-S, DVP06AD-S, DVP04AD-H2, DVP06XA-H2, DVP04AD-H3, DVP06XA-H3, DVP04AD-SL, DVP04AD-E2, DVP06XA-E2, AH04AD-5A, AH08AD-5A, AH08AD-5B, AH08AD-5C, AH06XA-5A), and some CPUs (DVP20EX00R2, DVP20EX00T2, DVP10SX11R, DVP10SX11T, DVP20EX200T, DVP20EX200R, DVP30EX200R, DVP30EX200T, DVP20SX211R, DVP20SX211T, DVP20SX211S, DVP24SV11T2)
Key word	Sensor, analog input

1. Function name / Application occasion

Installing environmental control equipment in a plant factory:

Compared with using a sensor which has a built-in communication function, using an anlaog-to-digital module and a voltage/current output sensor can reduce equipment costs, and integrate all environmental parameters to control the environmental parameters in a greenhouse. The parameters which can be integrated in a green house are temperature, humidity, carbon dioxide, acidity/alkalinity, electric conduction, and so on.

Monitoring environmental parameters:

An anlaog-to-digital module and a voltage/current output sensor can be applied to a weather station or a water quality monitoring station as long as the sensor can output corresponding current or voltage. The parameters that a weather station can monitor are temperature, humidity, carbon dioxide, rainfall, wind velocity, and so one. The parameters that a water quality monitoring station can monitor are temperature, acidity/alkalinity, biochemical oxygen demand, consistency of heavy metal, dissolved oxygen, and so on.

2. Control requirements

Doc. Name:	The analog input module connected to a sensor
Doc. Code:	134A-P-04ADS-APN001

Wiring diagram for external hardware:

External Wiring and Terminal Layout

Sensor with current output Ex: temperature, humidity, CO2, PH, electrical conductivity (EC)

3. Descriptions of devices

D0~D150 are used for data storage and operations. Users have to reserve these registers. Parameters that users need to set:

Register in a PLC	Description
D0	Maximum current passing through CH1
D2	Minimum current passsing through CH1
D4	Maximum physical quantity passing through CH1
D6	Minimum physical quantity passing through CH1
D8	Maximum current passing through CH2
D10	Minimum current passsing through CH2
D12	Maximum physical quantity passing through CH2
D14	Minimum physical quantity passing through CH2
D16	Maximum current passing through CH3
D18	Minimum current passsing through CH3
D20	Maximum physical quantity passing through CH3
D22	Minimum physical quantity passing through CH3
D24	Maximum current passing through CH4
D26	Minimum current passsing through CH4
D28	Maximum physical quantity passing through CH4
D30	Minimum physical quantity passing through CH4
D37	Digital full scale
D97	Number of milliseconds which passes before a sensor detects a value

Doc. Name:	The analog input module connected to a sensor	Ver.: 00
Doc. Code:	134A-P-04ADS-APN001	

Parameters that users read:

Register in a PLC	Description									
D32	Value read from CH1									
D33	Value read from CH2									
D34	Value read from CH3									
D35	Value read from CH4									
D36	Value read from PT									

4. Execution of a program

Owing to the sensor used is linear, the main operation used is a linear equation. First part=((Digital valuexMaximum current)/Digital full value)-Minimum current Second part=(Maximum physcial quantity-Minimum physical quantity)/(Maximum current-Minimum current) Conversion result=First partxSecond part

Structure of a program:

Doc. Name:	The analog input module connected to a sensor
Doc. Code:	134A-P-04ADS-APN001

5. Description of a program Setting 04AD and 04PT:

 ТО	КО	К1	H6DB	К1
 ТО	KO	К2	K20	K4
 то	К1	К1	КО	K1

Desciprtion of the instruction TO:

TO Station address Start CR Value which is written Number of reigsters Example:

TO K0 K1 H6DB K1

First line: TO K0 indicates the first PLC 04AD. K1 indicates CR#1. H6DB represents the binary value 011011011011. (CH1~CH4 adopts mode 3, that is, an input current mode.) The last K1 indicates that H6DB is written to only one register. (H6DB is written to CR#1.)

CR	RS-485	_		Regis	ster	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
#	parameter address	Li	atching	nan	ne	Bit	Bit switch (CR#1)				CH4			СНЗ		CH2			CH1		
#1	H'4001	0	R/W	Input setting	mode	Inpu Moc Moc Moc Moc	It moo le 0: le 1: le 2: le 3: le 4:	de se Input Input Input Not u	tting: volta volta curre curre sed	The ge m ge m ent me	facto ode (ode (ode (· ode (·	ry s -10\ -6V -12r -20r	ettin √ ~ - ∩A - nA -	g is +10` 10V - +2 - +2	H'0 V) ') 20m/ 20m/	(000 A) A)).				

Ver.: 00

Doc. Name:	The analog input module connected to a sensor	Ver.: 00
Doc. Code:	134A-P-04ADS-APN001	

Second line: TO K0 indicates the first PLC 04AD. K2 indicates CR#2. K20 indicates that the number of values which are averaged is 20. K4 indicates that K20 is written to 4 registers. (K20 is written to CR#2, CT#3, CR#4, and CR#5.)

CR	RS-485 parameter	Latching		Pogiotor nome	b15	o15 b14 b13 b12		b11	b10	b9	b8	b7	b6	b5 b4	b3	b2	b1	b0	
#	address		atching	Register name	Bit switch (C		h (CF	R#1)	CH4			СНЗ		3	CH2			CH1	
#2	H'4002	0	R/W	Number of values averaged for CH1															
#3	H'4003	0	R/W	Number of values averaged for CH2	Use CH1	ers ca 1/CH2	n set 2/CH3	the n 3/CH4	umb 1.	er of	valu	es a	aver	age	d for				
#4	H'4004	0	R/W	Number of values averaged for CH3	Sett The	ing ra facto	ange: ory se	K1 ~ tting	K20 is K1	0.									
#5	H'4005	0	R/W	Number of values averaged for CH4															

Third line: The thid line is used to set 04PT. In this example, the first PLC is 04AD, andthe second PLC is 04PT. TO K1 indicates the second PLC 04PT. The second K1 indicates CR#1. K0 indicates PT100. The last K1 indicates that K0 is written to only one register.

CR#	Address	L	atching	Register name	Description				
					CH1 mode: b0 ~ b3				
					CH2 mode: b4 ~ b7				
					CH3 mode: b8 ~ b11				
					CH4 mode: b12 ~ b15				
					Take CH1 mode (b3, b2, b1, b0) for instance.				
#1	H'4065	0	R/W	Mode setting	The default value is H'0000.				
					1. (0, 0, 0, 0): PT100				
					2. (0, 0, 0, 1): NI100				
					3. (0, 0, 1, 0): PT1000				
					4. (0, 0, 1, 1): NI1000				
					5. (1, 1, 1, 1): The channel is disabled.				

Doc. Name:The analog input module connected to a sensorDoc. Code:134A-P-04ADS-APN001

Reading a value from 04PT: FROM K1 K6 D36 K1

FROM K1 indicates the second PLC. K6 indicates that the value in CR #6 is read.

CR#	Address	Late	ching	Reg	gist	er nam	e	Description
#6	H'4006	x	R	Number averages f	of or C	input CH1	signals	
#7	H'4007	x	R	Number averages f	of or C	input CH2	signals	Users can set the number of input signals
#8	H'4008	x	R	Number averages f	of or C	input CH3	signals	averages for CH1/CH2/CH3/CH4.
#9	H'4009	x	R	Number averages f	of or C	input CH4	signals	

Parameters set by users:

DMOVR	F4000.000	D37
DMOVR	F20.000	DO
DMOVR	F4.000	D2
DMOVR	F5000.000	D4
DMOVR	F0.000	D6
DMOVR	F20.000	D8
DMOVR	F4.000	D10
DMOVR	F100.000	D12
DMOVR	F0.000	D14
L		

The value in D37 is digital full scale. In this example, the current input range for 04AD is 4 mA~20 mA, the digital conversion value range is 0~4000, and therefore the value in D37 is 4000.

Doc. Name: The analog input module connected to a sensor		Ver.: 00
Doc. Code:	134A-P-04ADS-APN001	

The value in D0 indicates the maximum current passing through CH1, and the value in D2 indicates the minimum current passing through D2. They are 20 and 4. The valus in D4 indicates the maximum physical quantity passing through CH1, and the value in D6 indicates the minimum physical quantity passing through CH1, and the value in D6 indicates the minimum physical quantity passing through CH1. In this example the physical property of CO2 is quantified by measurement. The physical quantity range for CO2 is 0 ppm~5000 ppm.

The value in D8 indicates the maximum current passin through CH2, and the value in D10 indicates the minimum current passing through CH2. The value in D12 indicates the maximum physical qunatity passing through CH2, and the value in D14 indicates the minimum physical quantity passing through CH2. In this example the physical property of humidity is quantified by measurement. The physical quantity range for humidity is 0%~100%.

Setting detection time:

мом	К10	D97	
	KIO	501	

The sensor used detects a value every 10 milliseconds.