

Industrial Automation Headquarters

Delta Electronics, Inc. Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd. Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, People's Republic of China (Post code: 215200) TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd. 238 Min-Xia Road, Pudong District, ShangHai, P.R.C. Post code : 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc. Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. 1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'I (S) Pte Ltd 4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd. Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas Delta Products Corporation (USA) Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: +55 11 3568-3855 / FAX: +55 11 3568-3865

Europe Deltronics (The Netherlands) B.V. Eindhoven Office De Witbogt 15, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

*We reserve the right to change the information in this catalogue without prior notice.

Delta Human Machine Interface & Controller HMC Series User Manual

HMC Series User Manual

Delta

Т

uman

Ma

chine

Interfac

D

Qo

0

ontroller

Table of Contents

Chapter 1 Introduction

1.1	Brief Introduction of HMC Controller	1-1
1.2	Concept of Distributed Motion Control	1-1
1.3	Overview of HMC models	1-2

Chapter 2 Introduction of Controller

2.1	Controllers Framework	2-1
2.2	Ladder Program	2-2
	2.2.1 Initial Task	2-2
	2.2.2 Cyclic Task	2-2
	2.2.3 Timer Task	2-5
	2.2.4 Sub Program	2-6
	2.2.5 Motion Program	2-7
2.3	Devices	2-8
	2.3.1 Input Relay (X) / Output Relay (Y)	2-10
	2.3.2 DMCNET Input Relay (DX) / Output Relay (DY)	2-11
	2.3.3 Auxiliary Relay	2-11
	2.3.4 Timer (T)	2-12
	2.3.5 Counter (C)	2-13
	2.3.6 Data Register (D)	2-16
	2.3.7 Indirect Reference Register (V) / (Z)	2-16

	2.3.8 DMCNet Analog Input (DAI) / DMCNet Analog Output (DAO) 2-17					
	2.3.9 Indicator (N) / Indicator (P) 2-1					
	2.3.10 Special Relay (R) / Special Register (W)	2-18				
	2.3.11 Constant (K) / Floating Points (F)	2-19				
2.4	Command List	2-20				
Chap	er 3 Special Devices					
3.1	List of Special Devices	3-1				
3.2	PLC Special Relay					
3.3	PLC Special Register	3-8				
3.4	Special Relay in Motion Mode	3-16				
	3.4.1 Relay Control in Motion Mode	3-17				
	3.4.2 Status Relay in Motion Mode	3-28				
3.5	Special Register in Motion Mode	3-32				
	3.5.1 Command Register	3-36				
	3.5.2 Status Register					
	3.5.3 Parameter Register in Motion Mode					
	3.5.4 Register of Servo Parameter	3-63				

Chapter 4 Command Introduction

4.1	Basic Command	. 4-1
4.2	Application Command	. 4-20

Chapter 5 Example of Motion Command

5.1	Preparation	5-1
5.2	JOG	5-2
5.3	Single Axis Linear Motion	5-3
5.4	3-axis Synchronous Linear Motion	5-5
5.5	4-axis Synchronous Linear Motion (Special Type)	5-7
5.6	Forward Speed	5-9
5.7	Reverse Speed	5-11
5.8	Decelerate to Stop	5-12
5.9	Homing	5-14
5.10	Arc: Radius & Angle	5-16
5.11	Arc: Midpoint & End Point	5-18
5.12	Arc: Center & End Point	5-20
5.13	Arc: End Point & Radius	5-22
5.14	Arc: Center & Angle	5-25
5.15	Helical	5-27
5.16	Helical W	5-30
5.17	Continuous PR Path	5-32
5.18	Handwheel	5-37

Chapter 6 Ladder Editor

6.1	Ladder Editor Software	6-1
6.2	New Ladder Program and Its Setting	6-4
	6.2.1 Initial Task	6-4

6.3	Othe	er Functions	6-11
	6.2.5	Motion Program	6-9
	6.2.4	Sub Program	6-8
	6.2.3	Timer Task	6-6
	6.2.2	Cyclic Task	6-4

Chapter 7 Appendix

7.1	Extension Pin (including the installation of handwheel)	7-1
7.2	Definition of Bus Pin	7-2
7.3	Setting and Framework of ASDA-M 4-axis Synchronous Servo Drive	7-3
7.4	Function of Capturing Device Table	7-3

Chapter 8 Application Notes

8.1	Using Rising-Edge of Flag to Initialize the Procedure	8-1
-----	---	-----

Chapter 1 Introduction

1.1 Brief Introduction of HMC Controller

Today's industry develops toward automation and follows a more precise, higher speed and higher cost performance trend. Thus, Delta offers a distributed motion control framework, which separates the logic controller and motion computing controller. Without the centralized computing load, it uses lots of lower-level processor (the price is cheaper in overall) instead of the high-level processor.

In Delta's distributed framework, HMC is mainly in charge of logic control and human machine operation. ASDA servo drive is responsible for motion control. Through the high speed communication, DMCNet, HMC and ASDA servo drive perfectly combine together. With this concept, the distributed framework accomplishes multi-axis precise motion control and reduces the cost of equipment at the same time.

Delta's HMC (Human Machine Interface & Control) integrates HMI and the function of logic computing (controller), which brings the high efficiency integration of HMI and logic control. It even plays an important role in today's industrial system and distributed control framework and provides users a great benefit including more powerful functions and less development time.

1.2 Concept of Distributed Motion Control

HMC processes the program logic control in Delta's distributed motion control framework, including calculating and issuing parameters of motion commands. HMC commands ASDA servo drive to conduct the interpolation during the process so as to acquire a more precise motion interpolation path. During the process, HMC only needs to exchange the data from ASDA servo drive, such as current position, current speed and flag status including servo alarm, command completed.

Unlike the traditional PLC, the controller has to frequently calculate the motion path and sends to the servo drive, the interpolation calculation in this framework is conducted by ASDA servo drive. Therefore, it will acquire a more accurate path and more smooth motion curve. However, since the multi-axis interpolation (e.g. multi-axis linear interpolation, arc interpolation or helical interpolation) is directly conducted and calculated by servo drive, the interpolation can only be done by one or each servo drive individually. Aiming at this multi-axis linear interpolation motion, HMC allocates the speed to different servo drive to conquer this barrier. Further explanation about this motion control will be detailed later. Following is the figure of distributed motion control framework.

1.3 Overview of HMC models

Delta offers three types of HMC models: HMC08 standard type, HMC07 handheld type, and HMC07 light type. Each model has slightly different specification, and these differences are listed in the table below. Please refer to the installation manuals (Quick Start) for more details on the product's hardware specifications.

Model		HMC08 Standard Type	HMC07 Handheld Type	HMC07 Light Type	
Display				7" TFT LCD	
LCD	Туре	0 IFILOD	7 IFILOD	(Widescreen)	
Module	Resolution	200 v 60	0 pixele	900 v 490	
	(pixels)	000 X 000		800 x 480	
Axes of	Control	Max.12 Axes	Max.12 Axes	Max.12 Axes	
		High-speed RS-422 IO	High-speed RS-422	DMCNot Romoto IO	
I/O M	odule	module / DMCNet IO module / DMCNet			
		Remote IO module Remote IO module		module	
Sound Effect Output		Stereo output N/A		N/A	
	COM1		RS-232/RS-422/	RS-485	
		R0-202	RS-485		
Serial	00140	RS-232/RS-422/	NI/A	N1/A	
Com Port	COMZ	RS-485	IN/A	IN/A	
	COM2	RS-232/RS-422/	NI/A	N1/A	
	COM3	RS-485	IN/A	IN/A	
Ethernet		1 Pc	ort	N/A	
Function Key		N/A 10		15	

Model	HMC08 Standard Type	HMC07 Handheld Type	HMC07 Light Type		
Emergency Stop Switch	N/A	A contact (NO): 1 B contact (NC): 1 Rated voltage: 30 V _{DC}	B contact (NC): 2 Rated voltage: 24 V _{DC}		
Limit Switch N/A		A contact: 1 Rated voltage: 30 V _{DC}	Only for internal register, no output signal		
MPG	N/A ^(Note 1)	N/A	Resolution: 50 (P/R) Only for internal register, no output signal		
Weight	Approx. 1314g	Approx. 1500g	750g (wire excluded)		
Note: 1) HMC08 Standard Type can connect external MPG via expansion slot.					

> HMC08 Standard Type

Using HMC08 Standard Type, users can connect ASDA series servo drives via DMCNet, and seclect the I/O module in accordance with the communication needs (High-speed RS-422 I/O module or DMCNet remote I/O module). In addition, users can use DOP eServe on PC to access the production records through Ethernet. HMC08 also can be connected to external MPG via expansion slot. Please refer to the figure below for the actual application:

ECAM Permanent-Magnet AC Servo Motor

> HMC07 Handheld Type

Using HMC07 Handheld Type, users can connect ASDA series servo drives via DMCNet, and seclect the I/O module in accordance with the communication needs (High-speed RS-422 I/O module or DMCNet remote I/O module). In addition, users can use DOP eServe on PC to access the production records through Ethernet. In addition, HMC07 Handheld Type offers physical emergency stop switch and limit switch, and provides 10 function keys. Please refer to the figure below for the actual application:

HMC07 Light Type

Using HMC07 Light Type, users can connect ASDA series servo drives via DMCNet, and select DMCNet remote I/O module. HMC07 Light Type offers physical emergency stop switch, limit switch and MPG operation. It also provides 15 function keys. Please refer to the figure below for the actual application:

ECAM Permanent-Magnet AC Servo Motor

Chapter 2 Introduction of Controller

2.1 Controllers Framework

The processing theorem of ladder used by HMC controller is time-division multiplexing which is different from the traditional PLC ladder diagram.

The traditional PLC only has one processor and can only execute one single ladder program. The theorem of PLC is that PLC reads the status of input device first at the beginning of every cycle and executes the command step by step sequentially. Then, it sends the computing result to the output device at the end of each cycle. Go round and begin again, starting from the cycle of [Read input status] \rightarrow [Computing] \rightarrow [Change output status]. However, a single ladder program will encounter difficulties, like a more complicated control and computing in development and maintenance.

HMC controller adopts TDM (Time Division Multiplexing) framework, which can execute from a single Cyclic Task to four Cyclic Tasks simultaneously at most. It provides users a great flexibility on program development. When HMC executes four Cyclic Tasks at the same time, it can be regarded as four small individual PLC for programming, which is a great benefit to the complicated program development. Each Cyclic Task of HMC has its own scanning time. Through the software setting, users can determine the time proportion of each Cyclic Task being executed by processor and to adjust the scanning time of each task. It can allocate more time to the vital one so as to shorten its scanning cycle.

HMC controller also adopts the concept of calling subroutine. It programs the function as subroutine, which will be called when needed for simplifying program development. HMC controller also provides Motion Program for the demand of motion control. This is for offering users different control method.

HMC controller's program includes Initial Task, Cyclic Task, Timer Task, Sub Program and Motion Program. Detailed description of each type will be shown in later part.

2.2 Ladder Program

2.2.1 Initial Task

A whole project can only exist one initial task. After activating HMC, it will be firstly executed once only. The initial setting of the system can be programmed in initial task. Since DMCNet communication has not been fully established when initial task is being executed, if applying reading/writing servo parameters, such as WSVP and RSVP command, and the W address that corresponded to servo parameters will be invalid.

2.2.2 Cyclic Task

A project will exist at least one cyclic task (Four is at most). HMC simultaneously executes these cyclic tasks by TDM. Through the setting of each task's usage, HMC can determine the computing time of cyclic task executed by processor. See the following diagram as the example. If two cyclic tasks, A and B are in a project, both have the same ladder program and require 8 ms of each scan, the usage is set as 80% and 20%, respectively. Assume the total scanning time of each cycle is 10 ms, the processor allocates 8 ms to execute cyclic task A and 2 ms to B, the pattern of executing cyclic tasks is as the following diagram. In the cycle, cyclic task A will be allocated 8 ms for execution, which could accomplish a complete scan. However, cyclic task B is only allocated 2 ms, which only can execute one fourth ladder program in each cycle. Thus, cyclic task B can execute an entire program after four scanning cycles while cyclic task, users can setup different usage, such as allocate more usage to a more important or timely needed cyclic task. So that it can reduce its scanning time.

In next example, the arrangement of usage rate will bring different influence to the scanning time of cyclic task. See the following figure below. There are two cyclic tasks, A and B, in a project, both have the same ladder program and require 2 ms to complete the process. We also arrange 80% of usage rate to A and 20% to B. Assuming that the scanning time per cycle is 10 ms, 8 ms will be allocated to A while 2 ms will be B. Please refer to the following figure for executing two cyclic tasks. In the first cycle, cyclic task A has 8 ms to scan. Since cyclic task A only takes 2 ms to complete the scanning, cyclic task B will start scanning right away. Cyclic task B is allocated to 2 ms and complete its mission in the first cycle. In this case, the scanning time of cyclic task A is identical to cyclic task B.

The ladder program of general controller updates the external input signal, On/Off status into the memory zone of input signal device. Save the computing result into the memory zone of each device during program execution. When END command is executed, send the On/Off status of memory zone to output device so as to change the external output. Since HMC controller can execute more than one cyclic task at the same time, it will read the external input signal at the beginning of every cyclic task. When any cyclic task executes END command, the On/Off status of computing result will be outputted to the external output device.

2.2.3 Timer Task

In a whole project, executing 8 timer task is at most. Each timer task can setup its [Time Interval](Unit: ms). It has the highest priority of execution for ensuring the task can be executed in time. Since HMC can execute more than one timer tasks, a single task cannot be executed too long. Otherwise it is unable to execute other tasks timely. Setup [Switching time](Default: 50 us) in the system, so that timer tasks can be switched for execution simultaneously.

See the following diagram as the example. If a project has two timer tasks, T1 and T2, set [Switching time] to 100 us and both set [Time Interval] to 100 ms. Since T1 is a bigger ladder program, the complete scanning time of T1 is longer than 100 us; While T2 is the smaller task, it takes less than 100 us for a scanning. As the following diagram, T1 is executed every 100 ms, but it could not complete scanning within 100 us. When the scanning runs for 100 us, it will stop the execution of T1 and the processor will switch to T2. The scanning time of T2 will not exceed 100 us, after the scanning is completed, the controller will switch back to T1 until the execution of T1 is completed.

Please bear in mind when using this task. Timer task has the highest priority of execution in all types of tasks. If timer tasks are executed too frequently, it will influence the scanning of cyclic task. Even the cyclic task might be unable to operate.

2.2.4 Sub Program

256 sub programs can be used in a project at most. Different function can be classified to different sub programs. And all types of tasks can repeatedly call the sub programs in order to accomplish program modularization which is good for maintenance as well as enhance the readability.

Command, [CALL] plus the sub program name can trigger the sub program. Then, the processor will execute the called sub program. When executing the command, [SRET], it means to end the sub program and return to the position where the sub program is called and continue the execution.

See the following diagram as the example. Call sub program, Sub1 by the command of [CALL Sub1] in cyclic task A. And Sub1 will be executed. Then, call Sub2 by the command of [CALL Sub2]. It will switch to execute Sub2. When [SRET] command is executed in Sub2, Sub2 is completed. It will return to the position where [CALL Sub2] is called in Sub1 and continue its execution. Similarly, if it encounters [SRET] command when executing Sub1, it means Sub1 is completed and will return to cyclic task A, continue the execution of [CALL Sub1] command until it goes to END command which means the scanning of cyclic task is finished.

Since sub program is allowed to call sub program, 8 layers of called sub program is at most. If exceeding the limit, status of [Grammar error](R18) will be On and the display of [Code of Grammar error](W18) will show 6.

2.2.5 Motion Program

256 motion programs can be used in a project at most. Its feature is similar to sub program, but the original program will continue to operate after using motion programs. The called motion program will be activated and executed with the original one. Motion program is mainly used in motion control. This is for maintaining the original execution of main control when the cyclic task triggers the motion command and will not influence the original procedure.

The [LAUNCH] command plus the name of motion program can activate the motion program. When [SRET] command is executed during operation, it means the motion program is completed. One motion program can be executed for one time. If more than one motion program is called, they will be executed one by one in order. Please note that once the motion program is launched, it will only execute one scanning.

See the following diagram as the example. Call Motion1 by [LAUNCH Motion1] when executing cyclic task A, cyclic task A will not be interrupted when triggering [LAUNCH Motion1] command. It will be executed continuously. If no motion program is executed at the moment, Motion1 will be executed until [SRET] command appears, which means the motion program is completed.

Please pay attention that, motion program cannot call another motion program. 256 motion programs which are waiting to be executed by HMC are at most. If exceeding the limit, status of [Grammar error](R18) will be On and the display of [Code of grammar error](W18) will show 12.

2.3 Devices

Range and number of devices available in HMC controller

Туре	Device		Item		Range		Contents
	Х	Input relay		0 ~ 511	Total 512 points		
	Y	Output relay		0~511	Total 512 points		
	DX	DMCNet input relay		1.0 ~ 12.63	Total 768 points		
	DY	DMCNet output relay		1.0 ~ 12.63	Total 768 points		
			G	eneral	0 ~ 511 1024 ~		
Relay		Auviliany			512 ~ 1023	Total	
(Bit)	М	relav			(* ¹ Use W10	8192	
		Telay	Latched	and W11 to	points		
				adjust the			
					range.)		
	т	Timer	1	00ms	0 ~ 199	Total 256	
	•			10ms	200~255	points	
	C	Counter		16-bit	0 ~ 199	Total 256	
	0	Counter		32-bit	200 ~ 255	points	
		Special relay			Total		
	R			lay	0 ~ 1535	1536	
						points	
		Timer's				Total 256	
	Т	current		16-bit	0 ~ 255	points	0 ~ 65535
		value				•	
Register		Counter's		16-bit	0 ~ 199	Total 256	0 ~ 65535
(Word)	С	current	:	32-bit	200 ~ 255	points	-2147,483,648~214
		value					7,483,647
	_	D Data 16- register bit	16-	General	0~2999	Total	-32,768
	D		bit		4000 ~	65536	~
					65535	points	32,767

Туре	Device	Item		Range		Contents	
					3000~3999		
					(* ² Use W12		
				Latched	and W13 to		
					adjust the		
					range.)		
		Indirect				Total 128	
	V	reference		16-bit	0 ~ 127	noints	-32,768~32,767
		register				points	
		Indirect				Total 128	2117 183 618~211
	Z	reference	32-bit		0 ~ 127	nointe	7 /83 6/7
		register				points	7,403,047
		Special				Total	
	W	register		16-bit	0 ~ 4095	4096	
		register				points	
			analo	a input	10~123	Total 48	
	DAI	DINCINEL	anaic	y input	1.0 * 12.5	points	
			analo	a outout	10~123	Total 48	
	DAO	DIVICINE	anaio	gouipui	1.0 * 12.5	points	
	NI	Loon	indic	ator	0~7	Total 8	
Indicator	IN	Loop	p indicator		0 ~ 7	points	
muicator	Р	lumn	p indicator		0 ~ 255	Total 256	
	Г	Jump			0 ~ 255	points	
Constant	К	Decimal constant					
Floating							
point	F	Floating	point ı	number			
number							

Note 1: W10 can determine the start position while W11 can determine its size.

Note 2: W12 can determine the start position while W13 can determine its size.

2.3.1 Input Relay (X) / Output Relay (Y)

The input/output relay is assigned number by decimal. Input relay X and Output relay Y corresponds to the input point and output point of Remote I/O module respectively. Please refer to the table below:

Device		Remote I/O			
	Station 1	Station 2	Station 3	~	Station 16
Input X	X0 ~ X31	X32 ~ X63	X64 ~ X95	~	X480~X511
Output Y	Y0 ~ Y31	Y32 ~ Y63	Y64 ~ Y95	~	Y480~Y511

Note 1: A Remote I/O module has 32 input points and 32 output points.

Note 2: Remote I/O module can connect up to 16 stations at most.

- Note 3: The station number of Remote I/O module is determined by module number and its physical station number. For example, if HMC is connected for 3 Remote I/O modules, the least physical station number is station 1, the second one is station 2 and the maximum one is station 3.
- Input relay (X)

Connect to the input device and read the input signal. Each A or B contact of input relay can be used without time limit in the program. On/Off of input relay X only can be switched by the On/Off of external input device.

• Output relay (Y)

Send On/Off signal and connect to contact Y. Each A or B contact of input relay can be used without time limit in the program.

2.3.2 DMCNet Input Relay (DX) / Output Relay (DY)

DMCNet input/output relay is assigned number by decimal. DMCNet input relay DX and DMCNet output relay DY corresponds to input point and output point of DMCNet RM (MN\NT\PT) module or HMC-RIO3232RT5 module respectively. Please refer to the table below:

Device	DMC-RMxx(MN\NT\PT), HMC-RIO3232RT5				
	Station 1	Station 2	~	Station 12	
Input DX	DX1.0 ~ DX1.63	DX2.0 ~ DX2.63	~	DX12.0 ~ DX12.63	
Output DY	DY1.0 ~ DY1.63	DY2.0 ~ DY2.63	~	DY12.0 ~ DY12.63	

• DMCNet input relay (DX)

Connect to the input device of DMCNet RM (MN\NT\PT) module and access the input signal. Each A or B contact of input relay can be used without time limit. On/Off of input relay D only can be switched by the On/Off of external input device.

 DMCNet output relay (DY) Send On/Off signal to set the contact DY of DMC-RM module. Each A or B contact of input relay can be used without time limit in the program.

2.3.3 Auxiliary Relay

Auxiliary relay M has output winding, contact A, B which acts as output relay Y, has no use limit in the program. Users can use auxiliary relay M but cannot drive the external devices. According to the characteristics, there are two types.

Auxiliary relay	General	M0~M511 M1024~M4095	Total
М	Latched	M512~M1023, 512 points is for latched zone as default. Adjust the range by W10 and W11	points

- Auxiliary relay for general use When HMC power off, the status will be set to Off even when the power is On again.
- Auxiliary relay for latched
 When HMC power off, the status will be remained even when the power is On again.

2.3.4 Timer (T)

Timer is coded by decimal number. Range: T0 ~T255

Timer T	100ms for general use	T0~T199, 200 points	Total 256 painta
	10ms for general use	T200~T255, 56 points	10121250 001115

Timer uses 10ms or 100ms as the timing unit and counts upward. When [Time's current value = Setting value], the output winding is On. Its setting value is a decimal constant (K), which can use a data register D as its setting value.

Timer's actual setting time = time unit * setting value

The timer times once after each TMR command execution. When the current value of the timer equals its setting value, its winding coil turns On.

When X0 = On, the current value of the timer T0 counts up in units of 100ms. In case the current value of T0 equals the setting value K100 (10 seconds), the winding coil T0 turns On.

When X0 = Off or power outage, the current value of timer T0 resets to 0 and its winding coil sets to Off.

2.3.5 Counter (C)

Counter C	16-bit count up, general purpose	C0~C199, 200 points	Total 256
	32-bit count up/down,	C200~C255,56 points, can be changed to	points
	general purpose	count down with settings R32~ R87	

Counter is coded by decimal numbers. Range: C0 ~C255

Counter's features:

Item	16-bit	32-bit	
Туре	General purpose	General purpose	
Direction	Count up	Count up and down	
Setting value	0 ~ 65,535	-2,147,483,648 ~ 2,147,483,647	
Type of setting	Constant K or data register	Constant K or data register D (assign	
value	D	both)	
Change of the	Stop counting when setting	Keep counting when setting value	
current value	value reached	reached	
		Contact sets and retains On when	
Output	Contact sets and retains On	setting value reached during	
contacts	when setting value reached	counting up.	
contacts		Contact resets to Off when setting	
		value reached during counting down	
Reset	The RST command reset current value to 0 and contact to Off		

When the counter's signal changes from Off to On, the counter will increase by 1. When the current value of the counter matches the setup one, the winding coil of the counter will turn on. The setting value is either a decimal constant K or a data register D. K0 and K1 functions in the same way and the output contact set On at the first counting.

16-bit counter C0~C199:

Setting range of 16-bit counter: K0~K65,535

Counter's setting value can be done by constant K directly or by register D indirectly. Example:

X0	. Y0			
C0		RST	C0	
X1	X1			
C0 K5		CNT	C0	K5
C0		(YO))	
Y0	I	\smile		
	X0 C0 X1 C0 K5 C0 Y0	$\begin{array}{c} X0 \\ C0 \\ X1 \\ C0 \\ K5 \\ C0 \\ Y0 \end{array}$	$\begin{array}{c} X0 \\ C0 \\ X1 \\ C0 \\ K5 \\ C0 \\ Y0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

When X0 = On, RST command is executed to reset C0 to 0 and output contact to Off. When X1 changes from Off \rightarrow On, the counter counts up by 1.

When counter C0 matches with the setting value of K5, the C0 contact turns On. The current value of C0 = setting value = K5. Later, C0 does not accept the trigger signal from X1. Its value remains equal to K5.

32-bit, general purpose arithmetic operation counter C200~C255: Range of 32-bit, general purpose counter's setting value: K-2,147,483,648 ~ K2,147,483,647

32-bit, general purpose arithmetic operation counters counting up or down can be switched by special relay R32~R87. For example, R32 = Off indicates C200 is for addition and R32 = On for subtraction.

The setting value can be constant K or data register D. The value can be positive or negative. If data register D is used, two consecutive data registers are required for one setup value.

Counter's current value changes from 2,147,483,647 to -2,147,483,648 when counting upward and -2,147,483,648 to 2,147,483,647 when counting downward.

Example:

LD	X10						
OUT	R32		X10	\frown			
LD	X11			(R32)			
RST	C200			RST	C200		
LD	X12			DCNT	C200	K-5	
DCNT	C200	K-5	C200	YO			
LD	C200		1	\smile			
OUT	Y0						

X10 driven R32 determines C200 is either addition (count up) or subtraction (count down).

When X11 changes from Off to On, RST command is executed to reset C200 to 0 and output contact to Off.

When X12 changes from Off to On, the counter value increased by 1 or decreased by 1. When the value of counter C200 changes from K-6 to K-5 (count up), the C200 contact turns On. When the value of counter C200 changes from K-5 to K-6 (count down), the C200 contact turns On.

2.3.6 Data Register (D)

The data register is used for keeping 16-bit numeric data in range of -32,768 ~ +32,767. The left most bit is a sign bit. Two 16-bit registers can be combined into one 32-bit register (D+1,D where the smaller ID represents the lower bits, 16-bit), with the left most bit serving as the sign bit. It can store numeric data in range of -2,147,483,648 ~ +2,147,483,647.

Data register D	Conoral	D0~D2999	Total
	General	D4000~D65535	10181 65526
	L stab s d	D3000~D3999, 1000 points is for latched zone.	points
	Latened	Adjust the range by W12 and W13.	

- General register
 When power Off, its value will be reset to 0.
- Latched register

The value will remain when power Off.

2.3.7 Indirect Reference Register (V) / (Z)

Indirect reference register V is the 16-bit register and Z is the 32-bit one. The range is V0 \sim V127 and Z0 \sim Z127, 128 points for each register.

V is the 16-bit data register, which is the same as the general ones. It can be written in or read without limit. If it is used as the general register, it only can be used in the 16-bit command.

Z is the 32-bit data register. If it is used as the general register, it only can be used in the 32-bit command.

When X0 = On, V0 = 8, Z0 = 14, D5V0 = D(5+8) = D13, D10Z0 = D(10+14) = D24, and contents in D13 will be moved to D24.

2.3.8 DMCNet Analog Input (DAI) / DMCNet Analog Output (DAO)

DMCNet analog input and output are using decimal numeration. DMCNet analog input (DAI) corresponds to ASD-DMC-RM04AD module, and DMCNet analog output (DAO) corresponds to ASD-DMC-RM04DA module. Each module provides 4 channels, and the corresponding addresses are listed in the table below:

Device	ASD-DMC-RM04AD, ASD-DMC-RM04DA				
	Station 1	Station 2	~	Station 12	
DMCNet Analog Input	DAI1.0 ~ DA1.3	DAI2.0 ~ DAI2.3	~	DAI12.0 ~ DAI12.3	
(DAI)					
DMCNet Analog	DAO1.0 ~ DY1.3	DAO2.0 ~ DAO2.3	~	DAO12.0 ~ DAO12.3	
Output (DAO)					

DMCNet Analog Input (DAI)
 When connected via DMCNet, analog input signals can be read through ASD-DMC-RM04AD module according to the input range of each channel. The acquired analog signals will be converted to digital signals. The range of the digital conversion is 0 ~ 65535.

When X10 = On, contents of AI CH03 in station 2 will be sent to the register D100.

• DMCNet Analog Output (DAO)

When connected via DMCNet, analog output signals can be read through ASD-DMC-RM04DA module according to the output range of each channel. The acquired analog signals will be converted to digital signals. The range of the digital conversion is $0 \sim 65535$.

When X10 = On, contents in register D100 will be sent to AO CH02 in station 2.

Note 1: The channel input/output range can be set via Ladder Editor: [Project] > [DAI/DAO setting].

2.3.9 Indicator (N) / Indicator (P)

Indicator	N	For main control loop	N0~N7, 8 points	Main control loop' s control point
	Р	For CJ command	P0~P255, 256 points	Position indicator by using CJ

Indicator N

Work together with MC/MCR command. MC is the main control initial command. When MC command is active, commands between MC and MCR run in a normal manner.

Indicator P

Work together with application command CJ. Example:

When X0 = On, the program jumps from address 0 to N (the assigned label P1), keeps executing and ignores statements in between. When X0 = Off, the program executes from address 0 downward and ignores command CJ.

2.3.10 Special Relay (R) / Special Register (W)

Detailed descriptions are in the chapter of special devices.

Classification	Range
Special relay in PLC system	R0 ~ R511
Special register in PLC system	W0 ~ W511
Special relay in motion mode	R512 ~ R1535
Special register in motion mode	W512 ~ W4095

2.3.11 Constant (K) / Floating Points (F)

Use 2 value types to execute computing. The following details the function of each one. The internal numerical computation adopts binary system, which is shown below:

Bit	Bit is the fundamental unit of a binary numeric value. It features only two states: 0 and 1.
Nibble	Composed of four consecutive bits (e.g. bit0 ~ bit3) to express decimal numbers
	$0 \sim 15$ or once place, hexadecimal numbers $0 \sim F$.
Byte	Composed of two consecutive nibbles (e.g. 8 bits, bit0 ~ bit7) to express two
	places, hexadecimal numbers 00 ~ FF.
Word	Composed of two consecutive bytes (e.g. 16-bit, bit0~bit15) to express four places, hexadecimal numbers 0000~FFFF.
Double Word	Composed of two consecutive words (e.g. 32-bit, bit0~bit31) to express eight places, hexadecimal number 00000000~FFFFFFFF.

• Constant K

Decimal numbers are usually prefixed with the letter K, such as K100, represents a decimal constant of value 100. Exceptions: Constant K can be combined with bit devices X, Y, M to express data in nibble, byte, word or double word format. Take K2Y10 and K4M100 as the example. Here K1 represents a 4 bits combination; K2~K4 represents a combination of 8, 12 and 16 bits respectively.

• Constant F

Operand in application command, e.g. [FADD F12.3 F0 D0]. (F represents a floating point constant.)

2.4 Command List

Followings are the commands provided by HMC controller.

Basic Command

Туре	Code	Symbol
Contact	LD	
command	LDI	+++
	AND	
	ANI	
	OR	
	ORI	
Combine command	ANB	-,
	ORB	
	MPS	
	MRD	
	MPP	
Output	OUT	—
command	SET	-SET D
	RST	
	PLS	-PLS D
	PLF	
Main	MC	-MC NO-
control	MCR	MCR NO
command		
Rising	LDP	
and	LDF	
falling	ANDP	
edge	ANDF	
detection	ORP	
	ORF	

Туре	Code	Symbol
Timing	TMR	-TMR TI K5
Counting	CNT	-CNTC1 K5
	DCNT	DCNT CI K5
Program	END	- END-
end		
Timing	IRET	
program		
end		
Subroutine	SRET	
end		
Invert	INV	<u> </u>
phase		
Rising	NP	↑
edge		
Falling	PN	↓
edge		
No	NOP	
operation		

Application Command

Tura a		Command code		E ursetien	OTEDO	Daga
туре	API	16-bit	32-bit	Function	STEPS	Page
Data	001	LD 🔆	DLD※	Contact type compare	5	
compare	002	AND 🔆	DAND 🔆	Contact type compare	5	
	003	OR※	DOR 🔆	Contact type compare	5	
Data	004	MOV	DMOV	Data move	5	
transfer	005	BMOV	-	All sending	11	
and	006	CML	DCML	Invert sending	5	
compare	007	BCD	DNCD	BIN→BCD convert	5	
	008	BIN	DBIN	BCD→BIN convert	5	
	009	-	FCMP	Floating point compare	7	
	050	FMOV	DFMOV	Assign all	11	
I/O	010	REF	-	I/O update	2	
Rotate and	011	ROR	DROR	Right rotate	3	
shift	012	ROL	DROL	Left rotate	3	
Loop	013	CJ	-	Conditional jump	2	
control	014	CALL	-	Call subroutines	2	
	015	LAUNCH	-	Activate motion	2	
				program		
	016	FOR	-	Nest loops start	3	
	017	NEXT	-	Nest loops end	1	
Arithmetic	018	ADD	DADD	BIN addition	7	
computing	019	SUB	DSUB	BIN subtraction	7	
command	020	MUL	DMUL	BIN multiplication	7	
	021	DIV	DDIV	BIN division	7	
	022	INC	DINC	BIN add one	3	
	023	DEC	DDEC	BIN minus one	3	
Logic	024	WAND	DWAND	AND operation	7	
computing	025	WOR	DWOR	OR operation	7	
command	026	WXOR	DWXOR	XOR operation	7	
	027	NEG	DNEG	Two's complement	3	
Floating	028	-	FADD	Floating point number	7	
points				addition		
computing	029	-	FSUB	Floating point number	7	
and				subtraction		
convert	030	-	FMUL	Floating point number multiplication	7	

	031	-	FDIV	Floating point number division	7	
	032	-	FINT	Floating point \rightarrow	5	
	033	-	FDOT	Integer \rightarrow Floating	5	
	004			point	_	
	034		FRAD	Degree → Radian	5	
	035		FDEG	Radian \rightarrow Degree	5	
	036		FSIN	Floating point SIN operation	5	
	037		FCOS	Floating point COS operation	5	
	038		FTAN	Floating point TAN	5	
	039		FASIN	Floating point ASIN	5	
	040		FACOS	Floating point ACOS	5	
	041		FATAN	Floating point ATAN	5	
	042		FSQR	Floating point square root operation	5	
Data	043	ZRST	-	Zone reset	4	
processing	044	DECO	-	Decoder	11	
command	045	ENCO	-	Encoder	11	
	046	BON	DBON	Bit ON detect	5	
	047	ALT	-	ON/OFF alternation	2	
Others	048	RSVP	-	Read parameters from servo drive	13	
	049	WSVP	-	Write parameters to servo drive	13	
	051	CKFZ		Forbidden zone check	5	

3.1 List of Special Devices

There are two types of special devices, special relay(R) and special register(W). For controller system and servo motion control, it can be classified as PLC system and motion mode. System's motion control and monitoring function can be realized by special devices of HMC. Please note that the command of block move (e.g. BMOV command) cannot be executed by special devices.

Туре	Range
PLC special relay	R0 ~ R511
Special relay in motion mode	R512 ~ R1535
PLC special register	W0 ~ W511
Special register in motion mode	W512 ~ W4095

3.2 PLC Special Relay

This special relay can be used to acquire the system's current status, including the calculating result, error monitoring, the connection of peripheral devices, key trigger and etc.

Туре	No.	Function	Description	Attribute	Latched
	R0	Normally close contact	B contact	R	No
	R1	Normally open contact	A contact	R	No
	R4	Error flag	On means abnormal; Off means normal	R/W	Yes
	R7	Motion control reset	On means reset, and will be clear automatically	R/W	No
Operation flag	R8	Zero flag	On means the calculation is 0.	R	No
Operation hay	R9	Borrow flag	On: the computing result is to borrow.	R	No
	R10	Carry flag	On: the computing result is to carry	R	No
	R13	Speed up data exchange	On means activate; Off means deactivate	R/W	No
	R14	Motion control ready	On means ready; Off means not ready	R	No
	R15	Motion control activate	On means activate; Off means deactivate	R/W	No
Flag of error types	R16	Remote IO error	On means it is unable to establish connection; Off means the connection is established.	R	No
	R17	DMCNet communication error	On means it is unable to establish connection; Off means the connection is established.	R	No
	R18	Grammar error	On means grammar error occurs during the operation, which needs to be cleared by users.	R/W	No

Туре	No.	Function	Description	Attribute	Latched
	R19	Motion control error	On means motion control is abnormal; Off means normal.	R	No
	R20	Command error	On means command error occurs during the operation, which should be cleared by users.	R/W	No
	R22	Servo parameters synchronous error	On means vital servo parameters error occur and should be cleared by users.	R/W	No
	R32	Setting of C200 counting mode	On = count down, Off = count up	R/W	Yes
Setting of	R33	Setting of C201 counting mode	On = count down, Off = count up	R/W	Yes
32-bit counting	~	~	~	~	~
mode	R86	Setting of C254 counting mode	On = count down, Off = count up	R/W	Yes
	R87	Setting of C255 counting mode	On = count down, Off = count up	R/W	Yes
Remote IO	R96	Connection status of station 0	On = online, Off = offline	R	No
	R97	Connection status of station 1	On = online, Off = offline	R	No
connection	~	~	~	~	~
status	R126	Connection status of station 30	On = online, Off = offline	R	No
	R127	Connection status of station 31	On = online, Off = offline	R	No
PLC special	R139	EMS button status	On = press, Off = release	R	No
flag	R140	Limit switch status	On = press, Off = release	R	No
Туре	No.	Function	Description	Attribute	Latched
---------------	------	---	--	-----------	---------
	R144	Handwheel controlOn = activate, Off =switchdeactivate		R/W	No
Logging flag	R498	Disable logging	On = disable logging Off = enable logging (default)	R/W	No
	R499	Enable file output	On = enable file output Off = disable file output	R/W	No
	R500	Save the record in latch area	On = enable latch function Off = disable latch function	R/W	No
Others R511 P		Pause PLC operation	On = Pause PLC operation Off = Resume PLC operation	R/W	No

- Normally close contact (R0)
 - Definition: The flag is constantly On during operation. It is called normally close contact (B contact / NC).
- Normally open contact (R1)
 - Definition: The flag is constantly Off during operation. It is called normally open contact (A contact / NC).
- Error flag (R4)
 - Definition: One of the error flags is activated, this flag will be On. It should be cleared by users after the alarm is relieved.
 - Related device: [Remote I/O error] (R16), [DMCNet communication error] (R17), [Grammar error](R18), [Motion control error](R19) or [Command error](R20) is activated so that this flag is ON.
- Motion control reset (R7)
 - Definition: Set this flag On to reset system motion control. After it is done, the flag will be Off automatically.
- Zero flag (R8)
 - Definition: After executing operational command, if the result is 0, this flag will be On.

- Borrow flag (R9)
 - Definition: After executing 16-bit operational command, if the result is less than -32,768 or the result of 32-bit operation is less than -2,147,483,648, then this flag is ON.
- Carry flag (R10)
 - Definition: After executing 16-bit operational command, if the result is more than 32,767 or the result of 32-bit operation is more than 2,147,483,647, then this flag is ON.
- Speed up data exchange (R13)
 - Definition: On means the speed up function is done, and the system will arrange more time to deal with the communication between PLC and HMI. Therefore, the display of servo status on HMI will be timelier and the data exchange between PLC and HMI will be more quickly. While turning off this flag, this function will be disabled.
- Motion control ready (R14)
 - Definition: Check if the node connection of DMCNet network is completed. On means the connection is done.
- Motion control activate (R15)
 - Definition: Check if the node underlying connection of DMCNet network is completed. On means the connection is completed. Set it to Off can reset the network.
- REMOTE IO error (R16)
 - Definition: Check if the connection of Remote IO connected to HMC is normal. On means the connection is in error.
 - Related device: The alarm code is shown in [Error Code of Remote IO](W16) when this flag is activated. This flag is off automatically when the connection is back to normal.
- DMCNet communication error (R17)
 - Definition: Check if the connection of DMCNet is normal. On means the connection is in error. This flag is off automatically when the connection is back to normal.
 - Related device: The alarm code is shown in [Error Code of DMCNet](W17) when this flag is activated.

- Grammar error (R18)
 - Definition: This flag is On when grammar error occurs during the command execution. Then, program scan is unable to carry on, jumps from the error occurred command and starts scan from the beginning. Users need to set this flag to off after the alarm is cleared.
 - Related device: The alarm code is shown in [Grammar error code](W18) when this flag is activated.
- Motion control error (R19)
 - Definition: On means the system's motion control is in error. [Motion Control Alarm Code] needs to be activated to clear the error.
- Command error (R20)
 - Definition: This flag is On when command error occurs during the operation.
 Program scan is unable to carry on. It will jump from the wrong command and start to scan from the beginning. Users need to set this flag to off after the alarm is cleared.
 - Related device: The alarm code is shown in [Command error code](W20) when this flag is activated.
- Servo parameters synchronous error (R22)
 - Definition: When DMCNet is connected, HMC will synchronous with servo parameters. When HMC changes values of main parameters, the synchronization will be done as well. However, when synchronization fails, this flag is activated and needs to be cleared manually. Meanwhile, [Servo parameters synchronous error code](W22) will be reset to 0.
 - Related device: The alarm code is shown in [Servo parameters synchronous error code] (W22) when this flag is activated.
- Setting of C200~C255 counting mode flag (R32~R87)
 - Definition: When flag is Off, the counter counts up while On means the counter counts down.
- REMOTE I/O connection status flag (R96~R127)
 - Definition: When flag is On, it means the connection is normal while Off means it is disconnected. R96 is the 1st station's connection status and R97 represents the second one and so on.

- EMS button status (R139)
 - Definition: When flag is On, it means the EMS button is pressed. Off means it is released.
- Limit switch status (R140)
 - Definition: When flag is On, it means the limit switch is in enabled status. Off means the switch is disabled.
- Handwheel control swtich (R144)
 - Definition: When flag is On, it means the current motion speed will be controlled by the handwheel. The flag can be activated anytime, before issuing the motion command or when the motion command is being processed. Off means to deactivate the handwheel control function and resume the original motion.
 - Related device: When this function is enabled, the motion speed will determine by [handwheel speed] (W80).
- Disable logging (R498)
 - Definition: When flag is On, it means the logging function is disabled. Off means logging function is enabled. When the function is activated, the system will continuously record the latest 50 servo commands and 50 servo statuses. User can acquire system's status through the function of [Review HMC command history].
- Enable file output (R499)
 - Definition: When flag is On, it means the system will output the record as HMI file (.des) every ten seconds. The record number is up to 20. When the flag is Off, it means this function is disabled.

Through the setting from [System setting] \rightarrow [File management] \rightarrow [Copy files], Users can output these records to external device, such as USB or SD card. Then, open these files (.des) to know more about system's status from [Review HMC command history].

- Save the record in latch area (R500)
 - Definition: When flag is On, it means the current 50 servo commands and 50 current servo statuses will be saved in latch area. The system will be resumed after re-power on. Off means this function is disabled.
 - Users can acquire these records through [Device data table]. After exporting files (.dep), [Review HMC command history] can be used as the reference when looking up system's status.

.

- Pause PLC operation (R511)
 - Definition: When this flag is On, the system will pause PLC operation in order to accelerate the accessing process between HMI internal memory and PLC devices. When system completes the accessing process, users need to set this flag to Off to resume PLC's operation.

3.3 PLC Special Register

This special register can acquire system's status and the related settings, including the information of version and controller's system, alarm code, peripheral devices and etc.

Туре	No.	Function	Description	Attribute	Latched
	W0	Module number	DW	R	No
	W2	DSP Firmware number	DW	R	No
	W4	Program format version	DW	R	No
	W7	Program size	Unit: Step	R	No
	W8	Address of execution error	DW, Unit: Step	R/W	No
Information of controller	W10	The starting address of latched device M	Default value: 512. The setting value should be 16's multiple.	R/W	Yes
system	W11	The size of latched device M	Default value: 512. The setting value should be 16's multiple.	R/W	Yes
	W12	The starting address of latched device D	Default value: 3000	R/W	Yes
	W13	The size of latched device D	Default value: 1000	R/W	Yes
	W14	Servo parameters synchronous error mode	Default value: 0	R/W	No

Туре	No.	Function	Description	Attribute	Latched
	W16	Remote I/O alarm code		R	No
	W17	DMCNet alarm code	R	No	
Alarm code	W18	Grammar error code		R	No
	W19	Motion control alarm code		R	No
	W20	Command error code		R	No
Remote IO	W32	Module version number of station 0		R	No
module version	~	~	~	~	No
number	W63	Module version number of station 31		R	No
Information of	W66	FPGA firmware version		R	No
	W67	FPGA PCB version		R	No
	W68	Time stamp	DW, Unit: 0.1 ms	R	No
	W72	Retry times of command issuing	Default value: 0	R/W	Yes
	W73	Retry times of servo parameter issuing	Default value: 0	R/W	Yes
	W74	Handwheel factor		R/W	Yes
Others	W75	DMCNet Mask	Command mask setting of each station in DMCNet. The default value is FFFF. It should be set to FCFF when using special ASDA-M 4-axis synchronizedservo drive.	R/W	Yes

Туре	No.	Function	Description	Attribute	Latched
	W76	Handwheel counting	DW, pulse counter of outer type of handwheel	R/W	No
	W80	Handwheel speed	DW	R	No
	W82	Sampling rate of handwheel speed	Default: 10; Unit: 1 ms; Range: 10 ~ 65535	R/W	No
	W83	Smoothing constant of handwheel speed	Default: 10; Range: 1 ~ 100	R/W	No

- Module number (W0)
 - Definition: Controller's module number, which is in DW format.
- DSP firmware number (W2)
 - Definition: Controller's DSP firmware number, which is in DW format.
- CWP format version (W4)
 - Definition: Controller's program format version, which is in DW format.
- Program size (W7)

- Definition: Step number in controller's program
- Address of execution error (W8)
 - Definition: When command execution error occurs, the step address of program error will be reported.
 - Related device: It occurs with [Grammar error](R18) or [Command error](R20).
- The starting address of latched device M (W10)
 - Definition: The setting of starting address of latched device M. Its setting value should be 16's multiple.
- The size of latched device M (W11)
 - Definition: The setting of the size of latched device M. Its setting value should be 16's multiple.
- The starting address of latched device D (W12)
 - Definition: The setting of starting address of latched device D.

- The size of latched device D (W13)
 - Definition: The setting of the size of latched device D.
- Servo parameters synchronous error mode (W14)
 - Definition: When servo parameters synchronous error occurs, [Servo parameters synchronous error](R22) will be On. And its address index will be shown in [Servo parameters synchronous error code](W22). Once this error occurs, the action dealing with this error status is according to its setting mode. Refer to the code below:

Code	Definition
00	No corrective action will be done. The system will only notify the users by flag [Servo parameters synchronous error](R22).
01	Before confirming the error (Flag of [Servo parameters synchronous error](R22) has to be manually cleared.), it is not allowed to proceed any operation, including jog and handwheel operation.
02	DMCNet communication will be reconnected until servo parameters are successfully synchronized with HMC. Then, [Co-Ld] will be shown on servo panel. Please note that when wrong HMC parameters' range leads to synchronous failure, users cannot change the parameters by screen element or OnLine Monitoring. It has to switch the mode back to 0 or 1 first so as to correct the value.

- REMOTE I/O error code (W16)
 - Definition: Communication error code of Remote I/O The error code:
 - 01: No Remote I/O device is detected
 - 03: Detect the disconnection of Remote I/O device
 - Related device: Activate with [Remote IO error](R16)
- DMCNet error code (W17)
 - Definition: Communication error code in DMCNet underlying network. The error code:
 - 01: unable to initialize DMCNet hardware
 - 02: unable to activate DMCNet hardware
 - 03: unable to initialize DMCNet connection
 - 04: underlying communication error on DMCNet
 - 05: error occurs when building connection among the devices via DMCNet.

- 07: During communication, disconnection occurs among the devices connected via DMCNet.
- Related device: Activate with [DMCNet communication error](R17).
 When the DMCNet error code is 7, please refer to the **Disconnection Flag** of each axis (R1184 ~R1195).
- Grammar error code (W18)
 - Definition: Grammar error code during operation.
 - The error code:

Code	Definition
05	FOR ~NEXT loop depth exceeds 5
06	CALL sub program depth exceeds 8
07	Floating point format is in error
10	The used device exceeds the range
11	RSVP, WSVP command execution error
12	The launched motion programs in queue that wait to be executed exceed 255
12	The launched motion programs in queue that wait to be executed exceed 255

- Related device: Activate with [Grammar error](R18)
- Motion control error code (W19)
 - Definition: Error occurs while processing motion control
 - The error code:

•

٠

Code	Definition
	Serious motion control error occurs in the system, such as servo motor crash
03	(AL. 30) or motor overspeed (AL. 918).
	When saving the record in latch area is enabled, this error will occur as well.
04	Error occurs when sending data to the servo
05	Error occurs when receiving data from the servo
09	Error occurs when processing motion command

- Related device: Activate with [Motion control error](R19)
- Command error code (W20)
 - Definition: Command error code during operation.
 - The error code:

Code	Definition
01	The conversion of BCD command exceeds 0~9,999 or the conversion of DBCD
	command exceeds 0~99,999,999.

Code	Definition
02	The devisor of DIV, DDI, FDIV command is 0
03	No bit is 1 in ENCO command source
04	The value exceeds 0~9 in BIN/DBIN command source
10	The source of FASIN command exceeds -1.0 ~ 1.0
11	The source of FACOS command exceeds -1.0 ~ 1.0

- Related device: Activate with [Command error](R20)
- Servo parameters synchronous error code (W22)
 - Definition: error code will be shown when servo parameters synchronization failed.
 See the following table for error code:

Code	Definition						
	When DMCNet communication is built at initial stage, HMC is failed to read						
	parameters from the servo drive.						
1XXXX	XXXX represents the parameter index number that HMC is failed to access.						
	For example, if the parameter that HMC is failed to read is W670, then the						
	code will be 0670.						
	HMC is failed to write the parameter into the servo drive. Parameter write-in						
	failure might result from the value exceeding the range.						
2XXXX	XXXX represents the parameter index number that HMC is failed to write in.						
	For example, if the parameter that HMC is failed to write is W670, then the						
	code will showbe 0670.						

- Related device: Activate with [Servo parameter synchronization error](R22). When this error flag is cleared, [Servo parameter synchronization error code] will be set to 0 as well.
- REMOTE IO module version (W32~W63)
 - Definition: Remote IO module version of each station
- FPGA firmware version (W66)
 - Definition: FPGA firmware version of HMC
- FPGA PCB version (W67)
 - Definition: FPGA PCB version number of HMC

- Time stamp (W68)
 - Definition: Time stamp of the system. Unit: 0.1ms; in DW format
- Retry times of command issuing (W72)
 - Definition: It is the setting of communication times when HMC issues command to servo. If the default value is 0, the system will issued each command twice to servo. Users could increase the time in order to enhance the communication quality. If the setting value is 3, then the command will be issued five times to servo.
- Retry times of servo parameter issuing (W73)
 - Definition: It is the setting of communication times when HMC writes the special relay with Remote attribute into servo. If the default value is 0, the system will writes into servo twice. User can increase the time in order to make sure the accuracy of writing parameters. If the setting value is 3, then the parameter will be written into servo for 5 times.
- Handwheel factor (W74)
 - Definition: The scaling setting of pulse received by handwheel and transferred to servo drive. Through this, handwheel pulse can be magnified in order to meet the requirement.

For example, 100 pulses can be sent by operating the handwheel for a cycle. If the motor needs 1,280,000 pulses for running a cycle in ASDA-M, the scaling setting should be 12,800 (1,280,000 / 100 = 12,800). Then, if handwheel operates a cycle, the motor will run a cycle.

Related device: Flag is enabled means the axis is controlled by handwheel. It might be axis 1 (R608), axis 2 (R609), ..., or axis 12(R619). It only can enable one axis each time. If more than one axis is enabled, the alarm occurs. Its scaling setting will influence the accumulated counting of [Handwheel counting](W76).

• DMCNet MASK (W75)

Definition: It is the mask setting when controller communicates with DMCNet's each station. With the general servo drive, the value should set to FFFF. However, the special framework should have different setting value, such as ASDA-M which supports 4-axis synchronized servo drive. The value should be set to FCFF to enable the operation.

- Handwheel counting (W76)
 - Definition: It is the accumulated counting value which magnified the pulse number received by handwheel and then transferred to the servo drive.
 - Related device: When the handwheel magnified the received pulse number through [Handwheel factor](W74), [Handwheel factor](W76) will accumulate the magnification value.
- Handwheel speed (W80)
 - Definition: When the handwheel control function is activated, servo motion speed will be controlled by handwheel speed.
 - Related device: After receiving the pulse from handwheel, HMC will magnify the pulse counting via [Handwheel factor] (W74). Then, start sampling according to [Sampling rate of handwheel speed] (W82). Referring to [Smoothing constant of handwheel speed] (W82) and acquire the result of [Handwheel speed] (W80).
- Sampling rate of handwheel speed (W82)
 - Definition: The setting value will determine the pulse counting sampling cycle. The smaller setting value it has, the more sensitive by the handwheel rotating, but sometimes it will occur the zero speed phenomenon
 - Related device: After receiving the pulse from handwheel, HMC will magnify the pulse counting via [Handwheel factor] (W74). Then, start sampling according to [Sampling rate of handwheel speed] (W82). Referring to [Smoothing constant of handwheel speed] (W82) and acquire the result of [Handwheel speed] (W80).
- Smoothing constant of handwheel speed (W83)
 - Definition: The setting value determines the smoothing level when it is controlled by handwheel. Bigger setting value brings smoother motion.
 - Related device: After receiving the pulse from handwheel, HMC will magnify the pulse counting via [Handwheel factor] (W74). Then, start sampling according to [Sampling rate of handwheel speed] (W82). Referring to [Smoothing constant of handwheel speed] (W82) and acquire the result of [Handwheel speed] (W80).

3.4 Special Relay in Motion Mode

HMC controls servo for 12 axes at most in DMCNet. The corresponding axis of each axis is as the following:

Function			Co	rrespondin	g address			
Function	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	~	Axis 12
Control by Servo a	xis						•	
Command start	R512	R513	R514	R515	R516	R517		R523
Quick stop	R528	R529	R530	R531	R532	R533		R539
Forward Jog	R544	R545	R546	R547	R548	R549		R555
Reverse Jog	R560	R561	R562	R563	R564	R565		R571
Servo On	R576	R577	R578	R579	R580	R581		R587
Fault Reset	R592	R593	R594	R595	R596	R597		R603
Handwheel activate	R608	R609	R610	R611	R612	R613		R619
Command load	R624	R625	R626	R627	R628	R629		R635
Command cancel	R640	R641	R642	R643	R644	R645		R651
Feed rate execution	R656	R657	R658	R659	R660	R661		R667
Pause	R672	R673	R674	R675	R676	R677		R683
Servo axis	1	1	1	1	<u> </u>	<u> </u>	<u> </u>	
Command error	R1024	R1025	R1026	R1027	R1028	R1029		R1035
Command ready	R1040	R1041	R1042	R1043	R1044	R1045		R1051
Command complete	R1056	R1057	R1058	R1059	R1060	R1061		R1067
Servo ON	R1072	R1073	R1074	R1075	R1076	R1077		R1083
Servo quick stop release	R1088	R1089	R1090	R1091	R1092	R1093		R1099
Servo Fault	R1104	R1105	R1106	R1107	R1108	R1109		R1115
Servo Warning	R1120	R1121	R1122	R1123	R1124	R1125		R1131
Servo ready	R1136	R1137	R1138	R1139	R1140	R1141		R1147

Disconnection flag	R1184	R1185	R1186	R1187	R1188	R1189	~	R1195
-----------------------	-------	-------	-------	-------	-------	-------	---	-------

3.4.1 Relay Control in Motion Mode

The list below is about the relay control in motion mode. These could accomplish the function to activate motion or clear the flag error. Take axis 1 as the example:

Function	No.	Description	Attribute	Latched
Command start	R512	On is starting motion command execution	R/W	No
Quick stop	R528	On means servo quick stops while Off means to release quick stop	R/W	No
Forward Jog	R544	On is for activating JOG in forward direction. Off is to release	R/W	No
Reverse Jog	R560	On is for activating JOG in reverse direction. Off is to release.	R/W	No
Servo On	R576	On means Servo On while Off means Servo Off	R/W	No
Fault Reset	R592	On means to clear the servo error	R/W	No
Handwheel activate	R608	On is to enable handwheel while Off means to disable it.	R/W	No
Command preload	R624	On is to load in the continuous motion command and starts to execute.	R/W	No
Command cancel	R640	On is for cancelling the continuous motion command.	R/W	No
Feed Rate execution	R656	On means to change the speed during operation. It turns Off after the command is completed automatically.	R/W	No
Pause	R672	On means pause; Off means resume	R/W	No

- Command start (R512)
 - Definition: When the flag is On. HMC starts to write the related parameters into servo and starts to execute the motion command. When HMC controls more than one servo drives, it only needs to issue the command to the very first one. For instance, if HMC controls a 5-axis servo drive, axis 1, 2, 3, 4 and 5, when the drive is executing 5-axis linear synchronized motion, issue the command to axis 1 and trigger the command will do. Trigger [Command start](R512) of axis 1 to On and sets up [Command selection] (Set W513 to 31. If Bit0 is On in W513, it means axis 1 should be activated, Bit1 On represents axis 2 and so on and so forth) to determine the related motion axis.

If desire to execute 3-axis linear synchronized motion of axis 2, 3, and 4. Issue the command to axis 2 will do. Trigger [Command start](R513) of axis 2 to On and set up [Command selection] can be done. (Set W769 to 7. Bit0 On means axis 2 should be activated, Bit1 On represents axis 3 and, Bit3 On represent s the fourth axis).

Apart from linear motion of multi-axis, if desire to execute the arc or helical motion, issuing the command to the first axis of ASDA-M will do.

In the following framework, HMC can only enable [Command start](R512) of axis 1 to execute arc or helical motion of axis 1, 2, and 3. Activate [Command start](R516) of axis 5 to execute arc or helical motion of axis 5, 6, and 7.

Related device: Flag of [Command complete] will have different status in different motion type. It is suggested to use handshaking method for program procedure control and to accomplish command issuing.

Take axis 1 as the example, in homing, linear and jog motion, before activate the command, users should write in the motion command and its correct corresponding parameters. When the setting of [Command code](W512), [Command selection](W513), [Speed setting](W518), [Target position](W520) is correctly completed, activate [Command start](R512). If the command has been written into the servo, the status of [Command ready](R1040) is On. Then, execute the motion command. When [Command complete](R1056) turns On, it means the motion command is completed.

In speed command, when issuing [Command start], [Command ready] is On, which means the command is issued to the servo drive and executed. However, it will not turn On [Command complete] when the servo drive executes the speed command. There is no need to wait flag, [Command complete]. It is suggested to use handshaking method for program procedure control and to accomplish command issuing.

When issuing the command is in error or servo status error, which is unable to accept the command, [Command start](R512) will be failed to trigger motion and [Command error] turns On.

Error: The following situations might result in [Command error] after activating [Command start]. The corresponding error code will display in [Error code] (W576 ...) of each axis.

Code	Definition
01	The speed is set to 0 or becomes 0 after transferring by E-gear ratio.
02	Axis of issuing command is in emergency stop status
03	Axis of issuing command is in Servo Off status
04	Command is executing and is unable to receive the new one.
05	Trigger the wrong command selection
06	Command parameter error
07	Command code error
08	Exceed the largest amount of continuous command when issuing continuous
	command
09	Issue continuous command time out
10	Command code cannot be used in continuous motion
11	Wrong [Speed command] setting
12	Pause time of multi-axis synchronous control is too long
13	Pause time of multi-axis synchronous control is 0
14	Motion mode switch error
15	Fail to update servo parameters
16	Servo parameter synchronization error
17	Incorrect distance given in the continuous commands

• Quick stop (R528)

- Definition: Flag [Quick stop] turns On. If the axis is in operation, it will stop the motion and then, stop urgently.
- Related device: Take axis 1 as the example, when [Quick stop](R528) is activated, if the servo is in operation, it will execute emergency stop according to [Quick Stop deceleration time](W670). Then, status of [Servo quick stop release](R1088) is Off, which means the axis is in the status of Quick stop. When [Quick stop](R528) is Off, status of [Servo quick stop release](R1088) will be On, which means the axis is not in quick stop status.

- Forward Jog (R544)
 - Definition: Flag [Forward Jog] is On. This axis is executing Jog in forward direction and will stop when the flag turns Off.
 - Related device: Take axis 1 as the example, when [Forward Jog] (R544) turns On, it will accelerate to the speed of [Jog speed](W678) according to the curve of [Jog acceleration time](W680). Then, it will remain at constant speed in forward direction according to [Jog speed](W678). When [Forward Jog](R544) is Off, the axis will decelerate to stop according to the curve of [Jog deceleration time](W681). In addition, set up [Jog torque limit](W682) can accomplish the torque protection function of Jog.

- Error: The following situation might result in no action after enabling the flag.
 - A. Servo is not in Servo On status.
 - B. Jog speed (W678) exceeds the setting of maximum speed limit (W660).
 - C. Servo is in Quick Stop status.
 - D. Handwheel function is activated.
 - E. Jog speed (W678) is set to 0.

- Definition: Flag [Reverse Jog] is On. This axis is executing Jog in reverse direction and will stop when the flag turns Off.
- Related device: Take axis 1 as the example, when [Reverse Jog] (R560) turns On, it will accelerate to the speed of [Jog speed](W678) according to the curve of [Jog acceleration time](W680). Then, it will remain at constant speed in reverse direction according to [Jog speed](W678). When [Reverse Jog](R560) is Off, the axis will decelerate to stop according to the curve of [Jog deceleration time](W681). In addition, set up [Jog torque limit](W682) can accomplish the torque protection function of Jog.

Error: The following situation might result in no action of servo after enabling the flag.

- A. Servo is not in Servo On status.
- B. Jog speed (W678) exceeds the setting of maximum speed limit (W660).
- C. Servo is in Quick Stop status.
- D. Handwheel function is activated.
- E. Jog speed (W678) is set to 0.
- SERVO ON (R576)
 - Definition: Set flag [Servo On] to On. This axis is Servo On. If the flag is set to Off, then it is Servo Off.
 - Related device: Take axis 1 as the example, when flag [Servo On](R576) is On, this axis will be Servo On. Status in [Servo On](R1072) will be On. If flag [Servo On](R576) is Off, then the axis will be Servo Off and display Off status in [Servo On](R1072).
 - Error: The following situation might result in no action of servo after enabling the flag.
 - A. DMCNet connection error. Check if it is DMCNet communication error (R17) or motion control error (R19).

• FAULT RESET (R592)

Definition: When servo axis is in error, this flag is On and enables the servo to clear the error. Users have to self turn the flag Off.

- Handwheel activate (R608)
 - Definition: Turn On the flag to activate the handwheel. Only one axis of handwheel can be activated at a time. Activate multi-axis of handwheel will cause command error.
 - Related device: After enabling handwheel function, the controller will multiply the pulse number which sent by handwheel according to [Handwheel factor](W74), then issue operation command to the servo. Its target position will be limited between [Reverse software limit of handweel] (W690) and [Forward software limit of handweel] (W692).

- Error: The following situation might result in no action of servo after enabling the flag.
 - A. Servo is not in Servo On status.
 - B. Handwheel function from other axis had been activated.
- Command load (R624)
 - Definition: [Command load] is the flag for loading in continuous motion commands and execution. It turns On the flag [Command load], and HMC starts to write related parameters into servo (preload command). When the write-in is completed,

HMC starts to execute continuous motion commands. Before the current command has been completed (At least two are executing), other motion command still can be loaded in. These commands will be wrote into the servo continuously and then executed in order so as to accomplish the so-called continuous motion commands.

Multi-axis linear or arc motion can be issued to continuous commands, only by writing into different command code and parameters will do. Also, through the setting of [Overlap], function of PR overlap can be enabled. When two PR are executed overlap, the motion can be completed quickly and smoothly.

The way of issuing each section of continuous motion command is the same as the single one. The difference is that single command should trigger [Command start](R512) and wait until [Command complete](R1056) is done so it can execute the next command. As for continuous command, triggering [Command load](R624) can issue and execute the command. After enabling [Command load], wait till [Command ready](R1040) is On, which means the command had been successfully loaded into the servo. And then, users can issue the next command. When all issued commands are completed, [Command complete](R1056) turns On.

Please note that for continuous command, when the last one is executed, the new command cannot be loaded in.

Related device: Take axis 1 as the example, when issuing continuous commands, please write in commands and parameters first, such as [Command code](W512), [Command selection](W513), [Speed setting](W518), [Target position](W520) and [Parameter start address](W525). Then, trigger [Command load](R624) in order to write parameters into the servo. When the status of [Command ready](R1040) is On, it means the command has been successfully written into the servo. When the second command is loaded in, the system will start to execute the motion. Before the last command has been executed, users can load in new command continuously. These load-in commands will be executed in order. [Command complete](R1056) turns On when all load-in commands are completed. The relevant Handshaking procedure is as the following:

HMC can preload 8 motion commands at most. Through [PR surplus](W594), users could acquire the remained number of commands which has been preloaded into the servo. When the number reached the limit ([PR surplus](W594) equals 8), users will not be able to issue new [Command load]. Flag of [Command ready] will not be On, which means the new motion command will be unable to write into the servo. Some current PR have to be completed, which means [PR surplus](W594) should less than 8 so that the system could trigger new [Command load] and write into the servo.

When the continuous command is being executed, if that is the last one (W594 = 1), then it could not receive new preload command. Users should wait until the current command is completed or stopped. If preload the wrong command, the preload command is failed and will not be wrote into the servo.

Code	Definition
01	The speed is set to 0 or becomes 0 after transferring by E-gear ratio.
02	Axis of issuing command is in emergency stop status
03	Axis of issuing command is in Servo Off status
04	Command is executing and is unable to receive the new one.
05	Trigger the wrong command selection
06	Command parameter error
07	Command code error
08	Exceed the largest amount of continuous command when issuing continuous
	command
09	Issue continuous command time out
10	Command code cannot be used in continuous motion
11	Wrong [Speed command]setting
12	Pause time of multi-axis synchronous control is too long
13	Pause time of multi-axis synchronous control is 0
14	Motion mode switch error
15	Fail to update servo parameters
16	Servo parameter synchronization error

Error: When command is given incorrectly, Error code will be displayed along with its definition. Please refer to the table below for more details:

Code	Definition
17	Incorrect distance given in the continuous commands

- Command cancel (R640)
 - Definition: When executing continuous commands, after triggering [Command cancel](R640), all preloaded continuous commands will be canceled and stop executing.
 - Related device: Take axis 1 as the example, when executing continuous commands, if [Command cancel]is On, command executing will stop and end the continuous commands. Then, [Command ready](R1040) and [Command complete](R1056) will be On. The relevant handshaking procedure is as the following:

- FEED RATE execution (R656)
 - Definition: During command execution, after triggering [Feed Rate execution], the setting of [Feed Rate speed], [Feed Rate acceleration time] and [Feed Rate deceleration time] will be changed. When the related commands of Feed Rate are executed, this flag will return to Off automatically.

In continuous motions, change the Feed Rate will only change the current motion. Before the current command is completed, it will execute the command according to the original setting speed. That is to say, change the feed rate is only effective to the current motion command.

Related device: Take axis 1 as the example, if [Feed Rate execution](R656) is On, the motion speed will be changed to [Feed Rate speed](W684), the acceleration time will be changed to [Feed Rate acceleration time](W686) and the deceleration time will be [Feed Rate deceleration time](W687). After the change is completed, flag [Feed Rate execution](R656) is Off automatically. Meanwhile, this will not influence the time sequence of command issuing.

- Pause (R672)
 - Definition: Set [Pause] to On during operation, the current action will stop. Set it to Off when the operation stops so that it will resume the original operation.

3.4.2 Status Relay in Motion Mode

Status relay in motion mode indicates servo's current alarm and function. The following is described in axis 1.

Function	No.	Description	Attribute	Latched
Command error	R1024	On means it is in error when issuing command. Users should self clear the error.	R/W	No
Command ready	R1040	On means the command has been issued to the servo.	R	No
Command complete	R1056	On means the servo has completed the command.	R	No
Servo ON	R1072	On means it is in Servo On status.	R	No
Servo quick stop release	R1088	On means servo quick stop has been released. Off means the servo is in quick stop status.	R	No
Servo Fault	R1104	On means servo error occurs	R	No
Servo Warning	R1120	On means servo alarm warning occurs	R	No
Servo ready	R1136	On means the connection between DMCNet and servo drive is established.	R	No

- Command error (R1024)
 - Definition: When issuing command to the servo, if parameter or servo status is in error and results in invalid command, this flag is On. As long as the flag is On, users have to set it back to Off. This flag only shows the command error that had ever occurred, if the error is not cleared, it will not influence the next command.
 - Related device: Take axis 1 as the example, when issuing [Command start](R512) or [Command load](R624), if command error occurs, [Command error](R1024) is On. And [Error code](W576) will show the reason of error occurs. The error code is as the followings:

Code	Definition
01	The speed is set to 0 or becomes 0 after transferring by E-gear ratio.
02	Axis of issuing command is in emergency stop status

Code	Definition
03	Axis of issuing command is in Servo Off status
04	Command is executing and is unable to receive the new one.
05	Trigger the wrong command selection
06	Command parameter error
07	Command code error
08	Exceed the largest amount of continuous command when issuing continuous command
09	Issue continuous command time out
10	Command code cannot be used in continuous motion
11	Wrong [Speed command]setting
12	Pause time of multi-axis synchronous control is too long
13	Pause time of multi-axis synchronous control is 0
14	Motion mode switch error
15	Fail to update servo parameters
16	Servo parameter synchronization error
17	Incorrect distance given in the continuous commands

- Command ready (R1040)
 - Definition: When issuing command to the servo, controller will write parameters into the corresponding servo drive through DMCNet. After that, flag of [Command ready] is On.
 - If command error occurs, it means the command issuing is failed. Then, flag of [Command ready] will not On. [Command ready]is the vital one to issue the command.
 - Related device: Take axis 1 as the example, when [Command start](R512) is On, [Command ready](R1040)] is Off automatically. When [Command start](R512) is Off, [Command ready](R1040) is Off, too. Please refer to [Command start] in [Control relay in motion mode] for detailed time sequence description.
- Command complete (R1056)
 - Definition: After issuing the command to servo drive, [Command complete] will be Off first. When the command is completed, [Command complete] will be On.

Related device: Take axis 1 as the example, when [Command start](R512) is set to On, [Command complete](R1056) of axis 1 is Off automatically. Please refer to [Command start] in [Control relay in motion mode] for detailed time sequence description.

- Servo ON (R1072)
 - Definition: It represents the servo drive's status. When this flag is On, it means the axis is in Servo On status. When this flag is Off, it means the axis is Servo Off.
 - Related device: Take axis 1 as the example, when [Servo On](R576) is On, it means Servo On is activated. When the status of servo axis 1 becomes Servo On, [Servo ON](R1072) will be On.
- Servo quick stop release (R1088)
 - Definition: See if servo axis is in quick stop status. If this flag is On, it means Quick Stop status has been released and can receive motion command. However, if this flag is Off, it means this axis is still in Quick Stop status and cannot receive motion command.
 - Related device: Take axis 1 as the example, if [Quick stop](R528) is On, it means HMC issues quick stop command to the servo. When servo is in quick stop status, flag of [Servo quick stop release](R1088) is Off.

Set [Quick stop](R528) to Off, means HMC issues quick stop released command to the servo. If it is released successfully, flag of [Servo quick stop release](R1088) is On.

In addition, if [DI Function Planning] of ASDA Servo parameter is set to Emergency stop (EMGS), DI signal will control the servo to be in quick stop status and HMC will lose its control.

• Servo fault (R1104)

- Definition: This flag will be On if an alarm occurs in servo axis. After being cleared, this flag is Off.
- Related device: Take axis 1 as the example, [Servo alarm code](W585) can show the alarm content of servo axis. [Fault Reset](R592) (Set to On) can be used to clear the alarm and reset the servo.
- Servo warning (R1120)
 - Definition: When a warning occurs, this flag is On. When the warning is cleared, then this flag is Off.

- Related device: Take axis 1 as the example, [Servo alarm code](W585) can show the content of servo warning and [Fault Reset](R592) (Set to On) can be used to clear the alarm and reset the servo.
- Servo ready (R1136)
 - Definition: When DMCNet connection between HMC and the servo is completed, the corresponding servo axis will set this flag to On, which means successful connection.
- Disconnection flag (R1184)
 - Definition: When the DMCNet connection has been built between HMC and servo drive, the disconnection flag status indicates the connection status. On indicates connection is in normal status, and Off means abnormal disconnection.
 - Users can rebuild DMCNet connection through the function of Motion control activate (R15).

3.5 Special Register in Motion Mode

Latched, readable (R) and writable (W) are included in the attribute of [Special register in motion mode]. When the attribute of [Latched] and [Remote] are both in special register, its parameters' setting value will be written into the servo drive when DMCNet connection between HMC and servo drive is successfully built.

Take [Electronic gear ratio (Numerator/Denominator)]as the example, when HMC successfully connects to servo drive, the setting value of [Electronic gear ratio (Numerator)](W640) and [Electronic gear ratio (Denominator)](W642) will be wrote into P1-44 (GR1) and P1-45 (GR2) of the servo drive. Thus, through the parameter setting, HMC could keep the consistency of the system's parameters.

HMC can control 12 axes of servo axis at most. Its function and corresponding address of DMCNet each axis are as the followings:

Function			Corr	responding	g address					
	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	~	Axis 12		
Command										
Command code	W512	W768	W1024	W1280	W1536	W1792		W3328		
Command selection	W513	W769	W1025	W1281	W1537	W1793		W3329		
Command mode	W514	W770	W1026	W1282	W1538	W1794		W3330		
Delay time	W515	W771	W1027	W1283	W1539	W1795		W3331		
Acceleration time	W516	W772	W1028	W1284	W1540	W1796		W3332		
Deceleration time	W517	W773	W1029	W1285	W1541	W1797		W3333		
Speed setting (DW)	W518	W774	W1030	W1286	W1542	W1798		W3334		
Target position (DW)	W520	W776	W1032	W1288	W1544	W1800		W3336		
Speed proportion	W522	W778	W1034	W1290	W1546	W1802		W3338		
Parameter start address	W524	W780	W1036	W1292	W1548	W1804		W3340		
Overlap	W525	W781	W1037	W1293	W1549	W1805		W3341		
Speed option	W526	W782	W1038	W1294	W1550	W1806		W3342		
Range of position completed	W528	W784	W1040	W1296	W1552	W1808	~	W3344		

Status							
Error code	W576	W832	W1088	W1344	W1600	W1856	W3392
Current position (DW)	W578	W834	W1090	W1346	W1602	W1858	W3394
Average torque (DW)	W580	W836	W1092	W1348	W1604	W1860	W3396
Current speed (DW)	W582	W838	W1094	W1350	W1606	W1862	W3398
Servo alarm code	W585	W841	W1097	W1353	W1609	W1865	W3401
Monitoring item 1(DW)	W586	W842	W1098	W1354	W1610	W1866	W3402
Monitoring item 2 (DW)	W588	W844	W1100	W1356	W1612	W1868	W3404
Monitoring item 3 (DW)	W590	W846	W1102	W1358	W1614	W1870	W3406
Monitoring item 4 (DW)	W592	W848	W1104	W1360	W1616	W1872	W3408
Motion surplus	W594	W850	W1106	W1362	W1618	W1874	W3410
DMCNet communication A error rate	W596	W852	W1108	W1364	W1620	W1876	W3412
DMCNet communication B error rate	W598	W854	W1110	W1366	W1622	W1878	W3414
Rapid monitoring item	W600	W856	W1112	W1368	W1624	W1880	W3416
Current speed	W602	W858	W114	W1370	W166	W1882	W3418
Motion parameter							
Electronic gear ratio (Numerator) (DW)	W640	W896	W1152	W1408	W1664	W1920	W3456
Electronic gear ratio (Denominator) (DW)	W642	W898	W1154	W1410	W1666	W1922	W3458
Unit display	W644	W900	W1156	W1412	W1668	W1924	W3460
Acc. / Dec. curve	W645	W901	W1157	W1413	W1669	W1925	W3461
Acceleration time	W646	W902	W1158	W1414	W1670	W1926	W3462
Deceleration time	W647	W903	W1159	W1415	W1671	W1927	W3463
Homing speed 1(DW)	W648	W904	W1160	W1416	W1672	W1928	W3464

Homing speed 2(DW)	W650	W906	W1162	W1418	W1674	W1930	W3466
Homing mode	W652	W908	W1164	W1420	W1676	W1932	W3468
Homing acc. /dec. time	W653	W909	W1165	W1421	W1677	W1933	W3469
Homing offset value (DW)	W654	W910	W1166	W1422	W1678	W1934	W3470
Forward software limit (DW)	W656	W912	W1168	W1424	W1680	W1936	W3472
Reverse software limit (DW)	W658	W914	W1170	W1426	W1682	W1938	W3474
Maximum speed limit (DW)	W660	W916	W1172	W1428	W1684	W1940	W3476
Monitoring item index 1	W666	W922	W1178	W1434	W1690	W1946	W3482
Monitoring item index 2	W667	W923	W1179	W1435	W1691	W1947	W3483
Monitoring item index 3	W668	W924	W1180	W1436	W1692	W1948	W3484
Monitoring item index 4	W669	W925	W1181	W1437	W1693	W1949	W3485
Quick Stop deceleration time	W670	W926	W1182	W1438	W1694	W1950	W3486
Deceleration time of stop command	W671	W927	W1183	W1439	W1695	W1951	W3487
Deceleration time for communication error	W672	W928	W1184	W1440	W1696	W1952	W3488
Motor overload deceleration time	W673	W929	W1185	W1441	W1697	W1953	W3489
Deceleration time of reverse software limit	W674	W930	W1186	W1442	W1698	W1954	W3490
Deceleration time of forward software limit	W675	W931	W1187	W1443	W1699	W1955	W3491
Deceleration time of reverse hardware limit	W676	W932	W1188	W1444	W1700	W1956	W3492
Deceleration time of forward hardware limit	W677	W933	W1189	W1445	W1701	W1957	W3493

Jog speed (DW)	W678	W934	W1190	W1446	W1702	W1958	W3494
Jog acceleration time	W680	W936	W1192	W1448	W1704	W1960	W3496
Jog deceleration time	W681	W937	W1193	W1449	W1705	W1961	W3497
Jog torque limit	W682	W938	W1194	W1450	W1706	W1962	W3498
Feed Rate speed (DW)	W684	W940	W1196	W1452	W1708	W1964	W3500
Feed Rate acceleration time	W686	W942	W1198	W1454	W1710	W1966	W3502
Feed Rate deceleration time	W687	W943	W1199	W1455	W1711	W1967	W3503
Rapid monitoring item index	W688	W944	W1200	W1456	W1712	W1968	W3504
Maximum speed limit	W689	W945	W1201	W1457	W1713	W1969	W3505
Reverse software limit of handwheel (DW)	W690	W946	W1202	W1458	W1714	W1970	W3506
Forward software limit of handwheel (DW)	W692	W948	W1204	W1460	W1716	W1972	W3508
Servo parameter	I		I	I	I	I	
Auto low-frequency vibration suppression setting	W704	W960	W1216	W1472	W1728	W1984	W3520
Inertia ratio to servo drive	W705	W961	W1217	W1473	W1729	W1985	W3521
Proportional gain of position control	W706	W962	W1218	W1474	W1730	W1986	W3522
Feed forward gain of position control	W707	W963	W1219	W1475	W1731	W1987	W3523
Speed control gain	W708	W964	W1220	W1476	W1732	W1988	W3524
Speed integral compensation	W709	W965	W1221	W1477	W1733	W1989	W3525
Low-pass filter of resonance suppression	W710	W966	W1222	W1478	W1734	W1990	W3526

Anti-interference gain	W711	W967	W1223	W1479	W1735	W1991	W3527
Speed detection filter and jitter suppression	W712	W968	W1224	W1480	W1736	W1992	W3528
Excessive deviation of position control (DW)	W724	W980	W1236	W1492	W1748	W2004	W3540
E-Cam curve scaling	W726	W982	W1238	W1494	W1750	W2006	W3542
E-Cam: Master gear ratio setting P	W728	W984	W1240	W1496	W1752	W2008	W3544
E-Cam: Activate E-Cam control	W730	W986	W1242	W1498	W1754	W2010	W3546
E-Cam: Information of disengaging time	W732	W988	W1244	W1500	W1756	W2012	W3548

3.5.1 Command Register

Command register in motion mode has the function of issuing the motion command. Take axis 1 as the example for description:

Function	No.	Description	Attribute	Latched	Default value
Command code	W512	Motion command type	R/W	No	0
Command selection	W513	The additional information that command code needs	R/W	No	0
Command mode	W514	Mode of position command	R/W	No	0
Delay time	W515	Delay time when positioning complete. Unit: ms	R/W	No	0
Acceleration time	W516	Acceleration time of servo axis	R/W	No	0
Deceleration time	W517	Deceleration time of servo axis	R/W	No	0
Speed setting (DW)	W518	Unit: PUU/s	R/W	No	0
Target position (DW)	W520	Unit: PUU	R/W	No	0

Speed proportion	W522	Percentage of actual motion speed	R/W	No	0
Parameter start address	W524	The start address of accessing parameters in D device in continuous PR path	R/W	No	0
Overlap	W525	PR overlap	R/W	No	0
Speed option	W526	Additional information that linear motion needs	R/W	No	0
Range of position completed	W528	Unit is PUU.	R/W	No	0

- Command code (W512)
 - Definition: According to different demands, different command code will be issued to the servo drive. Followings are the codes that are supported.
 - 0: No action
 - 1: Linear synchronization
 - 4: Forward speed
 - 5: Reverse speed
 - 6: Decelerate to stop
 - 8: Homing
 - 10: Arc: Radius & angle mode
 - 11: Arc: Midpoint & end point mode
 - 12: Arc: Center & end point mode
 - 13: Arc: Radius & end point mode
 - 14: Arc: Center & angle mode
 - 24: 4-axis linear synchronization (Special type of servo drive)
 - 30: Helical
 - 31: Helical W

Related device: When HMC issues command to the servo drive, the command needs to be written into [Command code] of trigger axis. For example, for the 3 axes of ASDA-M, if users desire to execute 3-axis motion, the command needs to be written into [Command code](W512), [Command selection](W513), [Speed setting](W518) and [target position](W520) of axis 1. Then, trigger flag of [Command start](R512) of axis 1 to enable the servo. Please refer to Chapter 5 for further information.

- Command selection (W513)
 - Definition: Different [Command code] has different corresponding setting method of [Command selection], which needs to be written into the trigger axis.

In linear and speed motion, [Command selection] is for enabling the axis, which starts from low bit to high bit in sequence. It will trigger the very first one. For example, when triggering [Command start] (R512) of axis 1, if bit0 of [Command selection](W513) is On, it means axis 1 needs to be activated. If bit1 is On, it means axis 2 needs to be activated and so on. However, when triggering [Command start] (R514) of axis 3, if bit0 of [Command selection] (W1025) is On, it means axis 3 needs to be activated. And if bit1 is On, it means axis 4 needs to be activated.

[Command selection] is the axis selection for arc motion. If the 3-axis of ASDA-M is axis1, axis 2 and axis 3 in sequence, then 0 means the arc motion is executed in axis 1 and 2. 1 means it is executed in axis 2 and 3 and 2 means the motion is executed in axis 1 and 3.

In helical motion, [Command selection] is the axis selection for helical moving. If the 3-axis of ASDA-M is axis 1, axis 2 and axis 3 in sequence, then 0 means arc moving is executed in axis 1 and 2 and axis 3 is for helical height moving. 1 means arc moving is executed in axis 2 and 3 and axis 1 is for helical height moving. 2 means axis 1 and 3 is for arc moving and axis 2 is for helical height moving. Related device: If the motion axis includes axis 1, it needs to trigger [Command start](R512). And parameters it uses will be [Command code] (W512), [Command selection](W513) and the related ones such as speed, position and etc. Please refer to Chapter 5 for further information.

- Command mode (W514)
 - Definition: The command mode used by linear motion supports the followings:
 - 0: Absolute position command. The destination of position command is directly specified as DATA.
 - 1: Relative position command. The destination of position command is the current feedback position plus the specified incremental DATA.
 - 2: Incremental position command. The destination of position command is the previous command destination plus the specified incremental DATA.
- DELAY time (W515)
 - Definition: The setting of Delay time after the single motion reaches the position.
- Acceleration time (W516)
 - Definition: The setting of acceleration time in single motion. If there is no setting, please refer to the system's [Acceleration time](W646).

- Deceleration time (W517)
 - Definition: The setting of deceleration time in single motion. If there is no setting, please refer to the system's [Deceleration time](W647).
- Speed setting (W518)

- Definition: In multi-axial synchronized motion, since the multi-axis has to be activated and ended simultaneously, the actual speed should be adjusted by the speed setting and moving distance of each axis. The default setting is based on the speed of the longest traveling distance. The speed of the axes with shorter travel distance will be adjusted by the based speed in order to synchronize multi-axis.
- Fault: Take axis 1 as the example, if the speed is set to 0, error will occur and [Command error](R1024) will be On. If the speed setting exceeds the setting value of [Max. speed limit] (W660), the system will operate at the speed of [Max. speed limit]. In multi-axis synchronized motion, if one of the axes exceeds the speed of [Max. speed limit], that axis will operate at [Max. speed limit]. Thus, the speed of multi-axis synchronized motion will be limited by [Max. speed limit] of each axis and reduce its speed.
- Target position (W520)
 - · Definition: Setting of command arrival position
 - Related device: The target position will be influenced by [Command mode](W514).
 The target position will be different because of the absolute, relative or incremental mode.
- Speed proportion (W522)
 - Definition: The actual speed is the result of [Speed setting] multiplies the percentage of [Speed proportion]. If [Speed setting] is 10000 and speed proportion is set to 20, then, the actual speed will be $10000 \times 20\% = 2000$. Also, each axis influences the speed of all synchronized axis by the speed of triggering axis.

The setting value is between 1 and 100. When exceeding the range, the setting of speed proportion will be regarded as 100, which operates at the speed of [Speed setting].
- Parameter start address (W524)
 - Definition: When issuing arc and helical commands, the related parameters should be written into the continuous D register. [Parameter start address] is the start address of setting PR. Take axis 1 as the example, if [Parameter start address](W524) is set to 1000, then, when issuing commands, the system will start to capture data from D1000 and send it to servo.

Take axis 1 in Arc: Radius & angle mode (Command code is 10) as the example, if [Parameter start address](W524) is set to 1000, when issuing arc motion command, the system will issue parameters, which start from D1000 to the servo drive. Since the parameter needs 6 continuous bits, the 6 continuous bits should be reserved. For example, if W524 is set to 1000, when planning the program, D1000 ~ D1005 should be reserved. Assume that [Parameter start address] is set to n, when executing arc motion, the definition of D register data is as the followings:

Definition	Parameter address		
Radius (DW)	Dn		
Start angle (DW; Unit: 0.5°)	Dn+2		
Motion angle (DW; Unit: 0.5°)	Dn+4		

Take axis 1 in Arc: Midpoint & endpoint mode (Command code is 11) as the example, if [Parameter start address](W524) is set to 1000, when issuing motion command, the system will issue parameters, which start from D1000 to the servo drive. Since the parameter needs 8 continuous bits, the 8 continuous bits should be reserved. For example, if W524 is set to 1000, when planning the program, D1000 ~ D1007 should be reserved. Assume that [Parameter start address] is set to n, when executing arc motion, the definition of D register data is as the followings:

Definition	Parameter address		
Midpoint coordinate 1 (DW)	Dn		
Midpoint coordinate 2 (DW)	Dn+2		
Endpoint coordinate 1 (DW)	Dn+4		
Endpoint coordinate 2 (DW)	Dn+6		

Take axis 1 in Arc: Center & endpoint mode (Command code is 12) as the example, if [Parameter start address](W524) is set to 1000, when issuing motion command, the system will issue parameters, which start from D1000 to the servo drive. Since the parameter needs 10 continuous bits, the 10 continuous bits should be reserved. For example, if W524 is set to 1000, when planning the program, D1000 ~ D1009 should be reserved. Assume that [Parameter start

Definition	Parameter address		
Circle center coordinate 1 (DW)	Dn		
Circle center coordinate 2 (DW)	Dn+2		
Endpoint coordinate 1 (DW)	Dn+4		
Endpoint coordinate 2 (DW)	Dn+6		
Forward & reverse (DW, 0			
forward, 1reverse)	Dn+8		

address] is set to n, when executing arc motion, the definition of D register data is as the followings:

Take axis 1 in Arc: Endpoint & radius mode (Command code is 13) as the example, if [Parameter start address](W524) is set to 1000, when issuing motion command, the system will issue parameters, which start from D1000 to the servo drive. Since the parameter needs 8 continuous bits, the 8 continuous bits should be reserved. For example, if W524 is set to 1000, when planning the program, D1000 ~ D1007 should be reserved. Assume that [Parameter start address] is set to n, when executing arc motion, the definition of D register data is as the followings:

Definition	Parameter address	
Endpoint coordinate 1 (DW)	Dn	
Endpoint coordinate 2 (DW)	Dn+2	
Radius (DW)	Dn+4	
Forward & reverse (DW, 0	Dale	
forward, 1reverse)	0+110	

Take axis 1 in Arc: Center & angle mode (Command code is 14) as the example, if [Parameter start address](W524) is set to 1000, when issuing motion command, the system will issue parameters, which start from D1000 to the servo drive. Since the parameter needs 6 continuous bits, the 6 continuous bits should be reserved. For example, if W524 is set to 1000, when planning the program, D1000 ~ D1005 should be reserved. Assume that [Parameter start address] is set to n, when executing arc motion, the definition of D register data is as the followings:

Definition	Parameter address
Circle center coordinate 1 (DW)	Dn
Circle center coordinate 2 (DW)	Dn+2
Motion angle (DW; Unit: 0.5°)	Dn+4

Take axis 1 in helical command (Command code is 30) as the example, if [Parameter start address](W524) is set to 1000, when issuing helical command, the system will issue parameters, which start from D1000 to the servo drive. Since the parameter needs 8 continuous bits, the 8 continuous bits should be reserved. For example, if W524 is set to 1000, when planning the program, D1000 ~ D1007 should be reserved. Assume that [Parameter start address] is set to n, when executing arc motion, the definition of D register data is as the followings:

Definition	Parameter address
Radius (DW)	Dn
Start angle (DW; Unit: 0.5°)	Dn+2
Motion angle (DW; Unit: 0.5°)	Dn+4
Height (DW)	Dn+6

Take axis 1 in helical W command (Command code is 31) as the example, if [Parameter start address](W524) is set to 1000, when issuing helical W command, the system will issue parameters, which start from D1000 to the servo drive. Since the parameter needs 10 continuous bits, the 10 continuous bits should be reserved. For example, if W524 is set to 1000, when planning the program, D1000 \sim D1009 should be reserved. Assume that [Parameter start address] is set to n, when executing arc motion, the definition of D register data is as the followings:

Definition	Parameter address		
Circle center coordinate 1 (DW)	Dn		
Circle center coordinate 2 (DW)	Dn+2		
Height of one cycle (DW)	Dn+4		
Total pitch number (DW)	Dn+6		
Offset angle (DW; Unit: 0.5°)	Dn+8		

- Related device: Take axis 1 in arc motion as the example, set up arc command in [Command code](W512) and setup axis selection in [Command selection](W513). Then trigger the flag of [Command start](R512) to start the execution. HMC will access arc motion data from D register of [Parameter start address](W524) and then issue parameters to the servo drive.
- OVERLAP (W525)
 - Definition: When executing the continuous motion, [Overlap] is for setting the overlap extent between the current motion and the next one. This setting could help to accomplish the interpolation between two paths. There are two ways for overlap:

1. Overlap for acceleration / deceleration time

It is the overlap percentage of the current PR deceleration time and the next PR acceleration time. Parameter P1-78, [The setting of PR overlap](P1-78) should set to 0, the range of [Overlap] setting value and its definition are as the followings:

Grade	7	6	5	4	3	2	1	0
Percentage	45%	40%	35%	30%	25%	20%	10%	0%
Grade	F	E	D	С	В	А	9	8
Percentage	100%	90%	80%	75%	70%	65%	55%	50%

2. Overlap for PR distance

It is the percentage of the current and next PR distance. Parameter P1-78, [The setting of PR overlap](P1-78) should set to 1, the range of [Overlap] setting value and its definition are as the followings:

Index 0~F	Description
0	1%
1	2%
2	4%
3	6%
4	8%
5	10%
6	12%
7	14%
8	16%
9	18%
А	20%
В	Refer to P1-79, The setting of the percentage of overlap PR path
С	Refer to P1-80, The setting of the distance of overlap PR path
D	Reserved
E	Reserved
F	Reserved

The setting range of parameter P1-79 is $1 \sim 30$. The setting unit of parameter P1-80 is PUU and the range is $100 \sim 2147483647$.

Related device: When executing continuous motion, take axis 1 as the example, when using [Command load](R624) to load and trigger command, it will issue the command, [Overlap] to the servo drive so as to setup the interpolation between two PR paths.

- Speed option (W526)
 - Definition: Through the setting of [speed option], the speed type of linear motion can be changed. Refer to the followings for its setting.
 - 1. 0: The longest traveling distance
 - 1 ~ 12: Speed of specified axis. The setting value means the multi-axis linear motion should be adjusted according to the speed of specified axis. For example, in three-axis linear motion (including axis 1, 2 and 3), if the setting value is 2, speed of axis 1 and 3 should be adjusted according to the speed setting of axis 2 (W774) so as to accomplish 3-axis linear synchronization.
 - 3. 255: Vector speed; when regarding [Speed setting] of trigger axis as the vector speed of multi-axis linear motion, in 3-axis linear motion (axis 1, 2 and 3), if the setting value is 255, it means the speed (W518) of trigger axis is regarded as the vector speed during operation.
 - Related device: When executing multi-axis linear motion command, including axis 1, users should set [Command code](W512) of axis 1 to 1 (linear) and [Command selection](W513) as the related selection of motion axis, such as [Speed setting](W518, W774, W1030, ...) and [Target position](W520, W776, W1032, ...).
 Refer to [Speed option](W526) so as to determine the speed mode. Then, trigger [Command start](R512) of axis 1 will do.
- Range of position completed (W528)
 - Definition: During the motion process, When the distance between motor's current position and target position is shorter than the range of position completed (W528), [Command complete] (R1056) will be On. Its unit is PUU.
 - Note1: this function is similar to servo parameter P1-54.

3.5.2 Status Register

It shows the current servo alarm status and servo function. Take axis 1 as the example:

Function	No.	Description	Attribute	Latched	Default value
Error code	W576	Error code when failed to issue the command.	R	No	0
Current position (DW)	W578	Current servo drive's position; Unit is PUU.	R	No	0
Average torque (DW)	W580	Current servo drive's average torque; Unit is %.	R	No	0

Function	No.	Description	Attribute	Latched	Default value
Current speed (DW)	W582	Current servo drive's speed; Unit is PUU/s.	R	No	0
Servo alarm code	W585	Servo alarm code, in BCD format	R	No	0
Monitoring item 1 (DW)	W586	The specified servo information of monitoring item 1	R	No	0
Monitoring item 2 (DW)	W588	The specified servo information of monitoring item 2	R	No	0
Monitoring item 3 (DW)	W590	The specified servo information of monitoring item 3	R	No	0
Monitoring item 4 (DW)	W592	The specified servo information of monitoring item 4	R	No	0
PR surplus	W594	The current written PR number in the servo drive.	R	No	0
DMCNet communication error A (DW)	W596	Communication error rate in channel A of DMCNet communication	R	No	0
DMCNet communication error B (DW)	W598	Communication error rate in channel B of DMCNet communication	R	No	0
Rapid monitoring item (DW)	W600	The specified servo information of rapid monitoring item	R	No	0
Current speed	W602	Current servo drive's speed; Unit is RPM	R	No	0

• Error code (W576)

•

Definition: When command issuing is failed, the error occurs with [Command error], and it will display the current error code, which shown below:

Code	Definition
01	Parameter of motion speed is 0:1. Speed is set to 0.2. The speed becomes 0 after transferring by E-gear ratio.
02	Servo drive is in QuickStop status: Axis of issuing command is in QuickStop status.
03	Servo drive is off: Axis of issuing command is in Servo Off status
04	Command is being executed: Command is being executed and is unable to receive the new one.
05	 Continuous motion command error: 1. In continuous motion path, each motion has to be executed by same axes. If the new motion command requires different axes, this error will occur. 2. Axes required by motion command do not exist (hasn't been connected).
06	 Helical or arc motion command error: 1. Issuing wrong parameters of motion position, e.g. If issuing three target positions for constituting an arc while three are in the same line, this error occurs. 2. Select wrong parameters of plane selection 3. Axes required by motion command do not exist (hasn't been connected).
07	Command code error: Use undefined command code
08	Exceed the largest amount of continuous command when issuing continuous command: Users are allowed to issue more than one motion commands continuously. However, the number of continuous command exceeds the limit, 8, the system will not be able to trigger new motion commands and this error will occur.
09	Issue continuous command time out: When the last continuous motion command is being executed, which means the continuous motion command will be completed soon, if new continuous command is issued, this error will occur.

Code	Definition
10	Command code cannot be used in continuous motion: Continuous motion command only accepts linear, arc and helical motions. Issuing other motion commands will result in this error.
11	Wrong speed setting for the specifying axis: When multiple axes are executing synchronous linear motion, if the moving distance of specifying axis is 0, this error will occur.
12	Pause time of multi-axis synchronous control is too long: In multi-axis synchronous motion control, the pause time of not-moving axis is calculated according to the motion time. If the pause time exceeds the allowable range, this error will occur. Users can speed up the motion to solve this problem.
13	Pause time of multi-axis synchronous control is 0: In multi-axis synchronous motion control, the pause time of not-moving axis is calculated according to the motion time. If the pause time is set to 0, this error will occur.
14	Motion mode switch error: [Command start] or [Command load] is triggered when the system is still in JOG or handwheel mode.
15	Fail to update servo parameters: When the system is in JOG or handwheel mode (means not allow to enter servo parameters), if users change servo parameters W, this error will occur.
16	Servo parameter synchronization error: When servo parameters synchronization error occurs and [Servo parameters synchronous error](W14) is set to 1 or 2, safety protection mechanism will be activated. Thus, before correcting the error, no command can be issued at the moment.
17	Incorrect distance given in the continuous commands: When the commands are given for continuous path, the total motion path of 8 continuous commands is 0.

- Current position (W578)
 - Definition: The current position; Unit is PUU
- Average torque (W580)
 - Definition: The current average torque; Unit is %.

•

- Current speed (W582)
 - Definition: The current speed; Unit is PUU/s.
- Servo alarm code (W585)
 - Definition: The code shows when servo error occurs, and the code is in BCD format.
 - Please refer to servo drive's user manual for code definition.
- Monitoring item 1/2/3/4 (W586/W588/W590/W592)
 - Definition: The status monitoring register which corresponds to the servo drive.
 - Related device: [Monitoring item index] determines the content of [Monitoring item]. Take axis 1 as the example, [Monitoring item 1](W586) will change its content according to [Monitoring item index 1](W666).
 - When changing the setting of [Monitoring item index], HMC will change the setting value and then send it to servo drive. Thus, the corresponding [Monitoring item] will display the correct parameter content after 1ms.
- PR surplus (W594)
 - Definition: It represents the command number that has been written into the servo drive and waits for execution. HMC can preload 8 commands into the servo drive at most. Range is from 0 to 8. 0 means no command is executing. In continuous command, when [PR surplus] is 8, it means the system has already been preloaded 8 commands and cannot trigger [Command load](R624) at the moment. That is to say, flag of [Command ready](R1040) will not be On until the current command is completed . When the number of [PR surplus] is less than 8, the new command can be loaded into the servo drive and flag of [Command ready](R1040) will be On.
- DMCNet communication error A/B (W596/W598)
 - Definition: The cumulative number of lost packages on communication channel A/B of DMCNet.
- Rapid monitoring item (W600)
 - Definition: The rapid monitoring register which corresponds to the servo drive.
 - Related device: [Rapid monitoring item index](W688) determines the content of [Rapid monitoring item](W600).
 - When changing the setting of [Rapid monitoring item index], HMC will change the setting value and then send it to servo drive. Thus, the corresponding [Rapid monitoring item] will display the content of correct parameter after 1ms.

•

- Current speed (W602)
 - Definition: The current speed; Unit is rpm.

3.5.3 Parameter Register in Motion Mode

Parameters that are related to motion control. Take axis 1 as the example for the following description.

Function	No.	Description	Attribute	Latched	Default setting
Electronic gear ratio (Numerator) (DW)	W640	Electronic gear ratio (Numerator)	Remote	Yes	1
Electronic gear ratio (Denominator) (DW)	W642	Electronic gear ratio (Denominator)	Remote	Yes	1
Unit display	W644	Unit setting; 0 = PUU	R/W	Yes	0
Acceleration / Deceleration curve	W645	S-curve acceleration / deceleration constant	Remote	Yes	0
Acceleration time	W646	Acceleration time	R/W	Yes	200
Deceleration time	W647	Deceleration time	R/W	Yes	200
Homing speed 1 (DW)	W648	First homing speed	R/W	Yes	2133333
Homing speed 2 (DW)	W650	Second homing speed	R/W	Yes	426666
Homing mode	W652	Homing mode selection	R/W	Yes	1
Homing acc. /dec. time	W653	Acceleration / deceleration time of homing	R/W	Yes	200
Homing offset value (DW)	W654	Offset of homing and positioning point	R/W	Yes	0
Forward software limit (DW)	W656	Position of forward software limit	Remote	Yes	0x7FFFF FFF
Reverse software limit (DW)	W658	Position of reverse software limit	Remote	Yes	0x800000 00
Maximum speed limit (DW)	W660	The maximum operation speed; Unit: PUU/s	Remote	Yes	64000000

Function	No.	Description	Attribute	Latched	Default setting
Monitoring item index1	W666	The content of monitoring item index 1	R/W	Yes	1
Monitoring item index 2	W667	The content of monitoring item index 2	R/W	Yes	13
Monitoring item index 3	W668	The content of monitoring item index 3	R/W	Yes	39
Monitoring item index 4	W669	The content of monitoring item index 4	R/W	Yes	40
Quick Stop deceleration time	W670	Deceleration time when Quick Stop	R/W	Yes	200
Deceleration time of stop command	W671	Deceleration time of stop command	Remote	Yes	30
Deceleration time for communication error	W672	Deceleration time for communication error	Remote	Yes	30
Deceleration time of motor overload	W673	Deceleration time when motor overload	Remote	Yes	30
Deceleration time of reverse software limit	W674	Deceleration time when in reverse software limit	Remote	Yes	30
Deceleration time of forward software limit	W675	Deceleration time when in forward software limit	Remote	Yes	30
Deceleration time of reverse hardware limit	W676	Deceleration time when in reverse hardware limit	Remote	Yes	30
Deceleration time of forward hardware limit	W677	Deceleration time when in forward hardware limit	Remote	Yes	30
Jog speed (DW)	W678	Jog speed	Remote	Yes	426666
Jog acceleration time	W680	Acceleration curve during jog operation	R/W	Yes	200
Jog deceleration time	W681	Deceleration curve during jog operation	R/W	Yes	200

Function	No.	Description	Attribute	Latched	Default setting
Jog torque limit	W682	Torque limit setting during jog operation; Unit: 0.1%	R/W	No	0
Feed Rate speed (DW)	W684	Setting of Feed Rate speed	R/W	No	0
Feed Rate acceleration time	W686	Setting of Feed Rate acceleration time	R/W	Yes	200
Feed Rate deceleration time	W687	Setting of Feed Rate deceleration time	R/W	Yes	200
Rapid monitoring item index	W688	The content of rapid monitoring item	R	No	0
Maximum speed limit	W689	The maximum operation speed; Unit: rpm	R	No	0
Reverse software limit of handwheel (DW)	W690	Position of reverse software limit when handwheel function is activated.	R/W	Yes	0x800000 00
Forward software limit of handwheel (DW)	W692	Position of forward software limit when handwheel function is activated.	R/W	Yes	0x7FFFF FFF

- Electronic gear ratio (Numerator) (W640)
 - Definition: The setting of servo drive's electronic gear ratio (numerator) should be done when Servo Off.

Through the setting of [Electronic gear ratio (Numerator)] and [Electronic gear ratio (Denominator)], pulse command (Pulse) is transferred to position command (PUU):

Command pulse input: f1 Position command: f2

Electronic gear ratio (N): N Electronic gear ratio (D): M

 $f2 = f1 \; x \; (N/M)$

Related Device: According to [Electronic gear ratio (Denominator)], it transfers the user unit of servo axis (PUU). Range: 1/50 ~ 25600.

٠

- Electronic gear ratio (Denominator) (W642)
 - Definition: The setting of servo drive's electronic gear ratio (Denominator) should be done when Servo Off.

Through the setting of [Electronic gear ratio (Numerator)] and [Electronic gear ratio (Denominator)], pulse command (Pulse) is transferred to position command (PUU):

Command pulse input: f1 Position command: f2

Electronic gear ratio (N): N Electronic gear ratio (D): M

$f2 = f1 \; x \; (N/M)$

Related Device: According to [Electronic gear ratio (Denominator)], it transfers the user unit of servo axis (PUU).

• Unit display (W644)

•

- Definition: It is the unit setting of HMC and servo drive. It only supports 0 as the default value, which is PUU.
- Acceleration / Deceleration curve (W645)
 - Definition: It is the setting of S-curve acceleration / deceleration smooth constant during operation, which corresponds to the setting of parameter P1-36 (Acceleration / Deceleration constant of S-curve)
- Acceleration time (W646)
 - Definition: It is the setting of system's acceleration time during operation.
- Deceleration time (W647)
 - Definition: It is the setting of system's deceleration time during operation.
 - •
- Homing speed 1 (W648)
 - Definition: It is the setting of first homing speed. When executing homing, the starting speed corresponds to parameter P5-05 (HSP1). The range of setting value is 0.1 ~ 2000.0 (rpm)

Related Device: When executing homing, it starts by [Homing speed 1] first. When ORG signal is ON, it will switch to the speed of [Homing speed 2]. Then, stop homing until Z pulse is found.

- Homing speed 2 (W650)
 - Definition: It is the setting of second homing speed. When executing homing, the starting speed corresponds to parameter P5-06 (HSP2). The range of setting value is 1 ~ 500.0 (rpm).

Related Device: When executing homing, it starts by [Homing speed 1] first. When ORG signal is ON, it will switch to the speed of [Homing speed 2]. Then, stop homing until Z pulse is found.

- Homing mode (W652)
 - Definition: The homing mode setting during operation. Followings are the codes of supported homing mode.
 - 1. Homing in reverse direction. It becomes forward direction when encounter negative limit switch and regard the first Z pulse as homing point.

2. Homing in forward direction. It becomes reverse direction when encounter positive limit switch and regard the first Z pulse as homing point.

 Determine to operate in forward or reverse direction according to Home Switch status

If homing is executed on Home Switch, then it will operate in reverse direction until it leaves Home Switch and regard the first Z pulse as homing point.

If homing is not executed on Home Switch, it will operate in forward direction to search Home Switch. Then, it will operate in reverse direction until it leaves Home Switch and regard the first Z pulse as homing point.

4. Determine to operate in forward or reverse direction according to Home Switch status

If homing is executed on Home Switch, it will operate in reverse direction until it leaves Home Switch. Then, it will operate in forward direction and regard the first Z pulse as homing point.

If homing is not executed on Home Switch, it will operate in forward direction to search Home Switch. Then, regard the first Z pulse as homing point.

5. Determine to operate in forward or reverse direction according to Home Switch status

If homing is executed on Home Switch, it will operate in forward direction until it leaves Home Switch. Then, regard the first Z pulse as homing point. If homing is not executed on Home Switch, it will operate in reverse direction and search Home Switch. Then, after leaving Home Switch, regard the first Z pulse as homing point.

6. Determine to operate in forward or reverse direction according to Home Switch status

If homing is executed on Home Switch, it will operate in forward direction until it leaves Home Switch. Then, it will operate in reverse direction and regard the first Z pulse as homing point.

If homing is not executed on Home Switch, it will operate in reverse direction to search Home Switch. Then, regard the first Z pulse as homing point.

7. Determine to operate in forward or reverse direction according to Home Switch status

If homing is not executed on Home Switch, it will operate in forward direction until it encounters Home Switch. Then, it will operate in reverse direction until it leaves Home Switch and regard the first Z pulse as homing point. If it does not encounter Home Switch but positive limit switch, it will operate in reverse direction and leaves positive limit switch. Then, keep operating until it encounters Home Switch and regards the first Z pulse as homing point after leaving Home Switch.

If homing is executed on Home Switch, it will operate in reverse direction until it leaves Home Switch and regards the first Z pulse as homing point. Simply to say, it is for searching the falling edge signal of Home Switch.

8. Determine to operate in forward or reverse direction according to Home Switch status

If homing is not executed on Home Switch, it will operate in forward direction until it encounters the first Z pulse and regards it as homing point. If it does not encounter Home Switch in forward direction but positive limit switch. Leave the positive limit switch in reverse direction and then it will encounter Home Switch. Then, keep operating in reverse direction until it leaves Home Switch and operates in forward direction and regards the first Z pulse as homing point.

If homing is executed on Home Switch, it will operate in reverse direction until it leaves Home Switch. Then, it will operate in forward direction and regards the first Z pulse as homing point.

Simply to say, it is for searching the rising edge signal of Home Switch.

9. Determine to operate in forward or reverse direction according to Home Switch status

If homing is not executed on Home Switch, it will operate in forward direction and encounters Home Switch. Keep operating in forward

direction until it leaves Home Switch. Then, operate in reverse direction until it regards the first Z pulse as homing point.

If homing is executed on Home Switch, it will operate in forward direction until it leaves Home Switch. Then, operate in reverse direction, encounter Home Switch and regard the first Z pulse as homing point.

Simply to say, it is for searching the rising edge signal of Home Switch.

10. Determine to operate in forward or reverse direction according to Home Switch status

If homing is not executed on Home Switch, it will operate in forward direction until it encounters Home Switch. Keep operating and regard the first Z pulse as homing point when leaving Home Switch. If it does not encounter Home Switch in forward direction but positive limit switch, it will operate in reverse direction to leave positive limit switch. Keep operating until it encounters Home Switch. Then, regard the first Z pulse as homing point after leaving Home Switch.

If homing is executed on Home Switch, it will operate in positive direction to leave Home Switch. Then, regard the first Z pulse as homing point.

11.~ 14.: Homing method corresponds to 7~10. The difference is the initial operating direction.

17. ~ 30.: Homing method is similar to 1~14, but it no longer needs to search Z pulse.

- 33. Operate in reverse direction and regard the first Z pulse as homing point.
- 34. Operate in forward direction and regard the first Z pulse as homing point.
- 35. Regard the current position as homing point.
- Related Device: When executing homing, [Command code] should be set to 8 and write [Command selection] into axis selection. Then trigger [Command start] according to [Homing mode], [Homing speed 1], [Homing speed 2], [Acceleration / deceleration time of homing] and [Offset value of homing] for homing.
- Acceleration / deceleration time of homing (W653)
 - · Definition: It is the acceleration / deceleration time setting of homing. Its unit is ms.
- Offset value of homing (W654)
 - Definition: After homing, set the distance between home position and zero position as the offset value. If the setting value is 1000, the home position will be -1000.

- Forward software limit (W656)
 - · Definition: Setup the position of forward software limit
 - Related Device: During Jog or homing, the operation will not stop when encountering software limit. However, [Servo Warning] will be On. If encounter software limit while executing other commands, the operation will stop and [Servo Warning] will be On and [Servo quick stop release] will be Off.

If desire to enable the operation again, set [Fault Reset] to On to reset the servo alarm status, then the command can be executed.

- Reverse software limit (W658)
 - Definition: Setup the position of reverse software limit
 - Related Device: During Jog or homing, the operation will not stop when encountering software limit. However, [Servo Warning] will be On. If encounter software limit while executing other commands, the operation will stop and [Servo Warning] will be On and [Servo quick stop release] will be Off.
 - Set [Fault Reset] to On to reset the servo alarm status, then the command can be executed.
- Maximum speed limit (W660)
 - Definition: During jog operation, if the speed exceeds this setting value, the servo drive cannot execute jog. When executing other motion commands, if the speed exceeds the setting value, it will operate at the speed of [Maximum speed limit]. After changing electronic gear ratio and the value exceeds the max. limit of the servo drive, the value will be changed to the setting value of [Maximum speed limit]. If HMC goes with ASDA servo drive which has the resolution of 1280000 pulses, the maximum speed is 5000rpm. Through [Electronic gear ratio (Numerator)] and [Electronic gear ratio (Denominator)], pulse command (Pulse) will be transferred to position command (PUU). Following is the calculation with max. speed limit.

```
Command pulse input: f1 Position command: f2

Electronic gear ratio (N): N Electronic gear ratio (D): M

f2 = f1 \times (N/M)

=> f1 = f2 \times (M/N)

=> 1 Pulse = (M/N) PUU

=> 1280000 Pulse = 1280000 \times (M/N) PUU

=> 1 rps = 1280000 \times (M/N) PUU/s
```

=> 1 rpm = 1280000 / 60 x (M/N) puu/s

Servo's maximum speed, 5000rmp

=> 5000 rmp = 5000 x 1280000 /60 x (M/N) puu/s

• Monitoring item index 1/2/3/4 (W666/W667/W668/W669)

Definition: Setup the display of [Monitoring item 1/2/3/4]. The setting content is the same as parameter function of [Servo drive status display]. Parameters' definition is as the following:

- 00: Motor feedback pulse number
- 01: Pulse number of command input
- 02: Command pulse and feedback pulse error
- 03: Motor feedback pulse number
- 04: Pulse number of command input
- 05: Error pulse number
- 06: Pulse command frequency
- 07: Motor speed
- 08: Speed input command
- 09: Speed input command
- 10: Torque input command
- 11: Torque input command
- 12: Average torque
- 13: Peak torque
- 14: Main circuit voltage
- 15: Inertia ratio
- 16: IGBT temperature
- 17: Resonance frequency
- 18: The absolute pulse number of Z phase
- 39: DI status
- 40: DO status
- Related Device: [Monitoring item index] determines the display content of [Monitoring item]. Take axis 1 as the example, [Monitoring item 1](W586) will change the display content according to the setting of [Monitoring item index 1](W666).

- Quick Stop deceleration time (W670)
 - Definition: Deceleration time setting of servo's Quick Stop
 - Related Device: Take axis 1 as the example, activate [Quick stop](R528) during operation, the system will stop by [Servo quick stop release](W670). Flag of [Release servo Quick Stop](R1088) will be Off, which means the servo is in stop status.
- Deceleration time of stop command (W671)
 - Definition: Deceleration time setting when servo is executing deceleration stop command.
 - Related Device: Take axis 1 as the example, if desire to execute deceleration stop command, [Command code](W512) should be set to 6 and trigger [Command start](R512). When the servo speed is 0, [Command complete](R1056) will be On, which means the command is completed.
- Deceleration time for communication error (W672)
 - Definition: When DMCNet communication is in error, the servo will decelerate to stop by command of [Deceleration time for communication error] and the servo is Off.
- Deceleration time of motor overload (W673)
 - Definition: When the motor is overload, the servo will decelerate to stop by command of [Deceleration time of motor overload].
- Deceleration time of reverse software limit (W674)
 - Definition: It is the deceleration time setting when servo encounters reverse software limit during operation.
- Deceleration time of forward software limit (W675)
 - Definition: It is the deceleration time setting when servo encounters forward software limit during operation.
- Deceleration time of reverse hardware limit (W676)
 - Definition: It is the deceleration time setting when servo encounters reverse hardware limit during operation.
- Deceleration time of forward hardware limit (W677)
 - Definition: It is the deceleration time setting when servo encounters forward hardware limit during operation.

- Jog speed (W678)
 - Definition: It is the speed setting during jog operation
 - Related Device: If the setting value of [Jog speed] is greater than the value of [Maximum speed limit], it will be unable to execute jog.
- Jog acceleration time (W680)
 - Definition: It is the curve setting of acceleration time during jog operation.
- Jog deceleration time (W681)
 - Definition: It is the curve setting of deceleration time during jog operation.
- Jog torque limit (W682)
 - Definition: It is the maximum torque limit setting during jog operation. The unit is 0.1%. If the value is set to 500, it means the maximum torque cannot exceed 50% during jog operation.
- FEED RATE speed (W684)
 - Definition: Change the setting value of current speed.
 - Related Device: When [Feed Rate execution] is On, the current speed will be changed to the value of [Feed Rate speed]. Then, [Feed Rate execution] will be Off.
- FEED RATE acceleration time (W686)
 - Definition: Change the acceleration time of current operation.
 - Related Device: When [Feed Rate execution] is On, the current acceleration time will be changed to the value of [Feed Rate acceleration time]. Then, [Feed Rate execution] will be Off.
- FEED RATE deceleration time (W687)
 - Definition: Change the deceleration time of current operation.
 - Related Device: When [Feed Rate execution] is On, the current deceleration time will be changed to the value of [Feed Rate deceleration time]. Then, [Feed Rate execution] is Off.
- Rapid monitoring item index (W688)
 - Definition: Setup the display of [Rapid monitoring item]. The setting content is the same as parameter function of [Servo drive status display]. Parameters' definition is as the following:
 - 00: Motor feedback pulse number
 - 01: Pulse number of command input

- 02: Command pulse and feedback pulse error
- 03: Motor feedback pulse number
- 04: Pulse number of command input
- 05: Error pulse number
- 06: Pulse command frequency
- 07: Motor speed
- 08: Speed input command
- 09: Speed input command
- 10: Torque input command
- 11: Torque input command
- 12: Average torque
- 13: Peak torque
- 14: Main circuit voltage
- 15: Inertia ratio
- 16: IGBT temperature
- 17: Resonance frequency
- 18: The absolute pulse number of Z phase
- 39: DI status
- 40: DO status
- Related device: [Rapid monitoring item index](W688) determines the display content of [Rapid monitoring item](W600).
- Maximum speed limit (W689)
 - Definition: Maximum moving speed in rpm, and this value will be changed with [Maximum speed limit](W660). During Jog operation, if the speed exceeds this setting value, the servo drive cannot execute Jog. When executing other motion commands, if the speed exceeds the setting value, it will operate at the speed of [Maximum speed limit].
- Reverse software limit of handwheel (W690)
 - Definition: Position of reverse software limit when handwheel function is activated.
 - Related device: When the flag of [Handwheel activate] (R608) is on, the reverse limit is activated.
- Forward software limit of handwheel (W692)
 - · Definition: Position of forward software limit when handwheel function is activated.
 - Related device: When the flag of [Handwheel activate] (R608) is on, the forward limit is activated.

3.5.4 Register of Servo Parameter

It issues parameters which are related to servo control. Take axis 1 as the following description:

Function	No.	Attribute	Latched	Default value
Auto setting of low-frequency vibration suppression	W704	Remote	No	0
Inertia ratio and load weight ratio to servo motor	W705	Remote	No	10
Proportional gain of position control	W706	Remote	No	35
Feed forward gain of position control	W707	Remote	No	50
Speed control gain	W708	Remote	No	500
Speed integral compensation	W709	Remote	No	100
Resonance suppression of low-pass filter	W710	Remote	No	20
Anti-interference gain	W711	Remote	No	0
Speed detection filter and jitter suppression	W712	Remote	No	0
Excessive deviation of position control deviation (DW)	W724	Remote	Yes	3840000
E-Cam curve scaling	W726	Remote	No	1000000
E-Cam: Master gear ratio setting P	W728	Remote	No	3600
E-Cam: Activate E-Cam control	W730	Remote	No	0
E-Cam: Information of disengaging time	W732	Remote	No	0

• Auto setting of low-frequency vibration suppression (W704)

• Definition: It corresponds to the setting of P1-29, Auto setting of low-frequency vibration suppression. If it is set to 0, the function is disabled. If it is set to 1, the value will set back to 0 after vibration suppression.

• Inertia ratio and load weight ratio to servo motor (W705)

Definition: It corresponds to the setting of P1-37, Inertia ratio and load weight ratio to servo motor.

Rotary motor: (J_load / J_motor)

J_motor: rotor inertia of the servo motor,

J_load: Total equivalent of inertia of external mechanical load.

•

- Proportional gain of position control (W706)
 - Definition: It corresponds to the setting of P2-00, Proportional gain of position control. When the value of position loop gain is increased, the position response can be enhanced and the position error can be reduced. If the value is set too big, it may easily cause vibration and noise.
- Feed forward gain of position control (W707)
 - Definition: It corresponds to the setting of P2-02, Feed forward gain of position control. If the position command is changed smoothly, increasing the gain value can reduce the position error. If the position command is not changed smoothly, decreasing the gain value can tackle the problem of mechanical vibration.
- Speed control gain (W708)
 - Definition: It corresponds to the setting of P2-04, Speed control gain. Increase the value of speed loop gain can enhance the speed response. However, if the value is set too big, it would easily cause resonance and noise.
- Speed integral compensation (W709)
 - Definition: It corresponds to the setting of P2-06, Speed integral compensation. Increasing the value of speed integral compensation can enhance speed response and diminish the deviation of speed control. However, if the value is set too big, it would easily cause resonance and noise.
- Resonance suppression of low-pass filter (W710)
 - Definition: It corresponds to the setting of P2-25 Resonance suppression of low-pass filter. Set the low-pass filter of resonance suppression. When the value is set to 0, the function of low-pass filter is disabled.
- Anti-interference gain (W711)
 - Definition: It corresponds to the setting of P2-26, Anti-interference gain. Increasing the value of this parameter can increase the damping of speed loop.
- Speed detection filter and jitter suppression (W712)
 - Definition: It corresponds to the setting of P2-49, Speed detection filter and jitter suppression, which is for setting speed detection filter.

- Excessive deviation of position control (W724)
 - Definition: It corresponds to the setting of P2-35, Condition of excessive position control deviation. The setting of excessive position control deviation warning in servo drive error display.
- E-Cam curve scaling (W726)
 - Definition: It corresponds to the setting of P5-19, E-Cam curve scaling. This parameter is used to magnify or minify the E-Cam table.
- E-Cam: Master gear ratio setting P (W728)
 - Definition: It corresponds to the setting of P5-84, E-Cam: Master gear ratio setting P. When receiving pulse number P of the master, E-Cam will rotate M circle, which is the M cycle of the E-Cam table.
- E-Cam: Activate E-Cam control (W730)
 - Definition: It corresponds to the setting of P5-88, E-Cam: Activate E-Cam control, which controls E-Cam activate, Command source and Engaging.
- E-Cam: Information of disengaging time (W732)
 - Definition: It corresponds to the setting of P5-89, E-Cam: Information of disengaging time. Control E-Cam disengaging time.

(This page is intentionally left blank.)

Chapter 4 Command Introduction

4.1 Basic Command

• LD

Command	Function	Step Number
LD	Load A contact	1 Step

	Bi	t de	vice				Word device									External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	bit	Word
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-

Command description

The LD command applies to the starting A contact of a left bus bar or a starting A contact in loop block. It saves the current value and stores the acquired contact status in a cumulative register.

Comma	na coae :	Description :
LD	X0	Load X0's A contact
AND	X1	Serial connect X1'sA
		contact
OUT	Y1	Drives coil Y1

. ..

LDI

Command	Function	Step Number
LDI	Load B contact	1 Step

	Bi	t de	vice				Word device									External device		
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-	
The LDI command applies to the starting B contact of a left bus bar or a starting B																		
Command contact in loop block. It saves the current value and stores the acquired contact												contact						
description)	status in a cumulative register.																
	7	Lac	dder	dia	grar	n:				Command code: De					Des	escription:		
Example			XO	X	1			-Y1				Х	0		Loa	ad X0's B co	ontact	
											AND		X1		Serial connect X1's A		X1's A	
															cor	ntact		

OUT

Y1

Drives coil Y1

• AND

Command	Function	Step Number
AND	Serial connect A contact	1 Step

	Bi	t de	vice				Word o	device		External device								
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-	
Command description		The give tog in a	The AND command serial connects A contacts. It reads the current status of the given serial contacts and executes the AND operation on the acquired data together with the outcomes from previous logic operations and saves the outcome in a cumulative register.														e	
Ladder diagram:										Con LDI	nma	ind (X	cod	e:	De: Loa	scription: ad X0's B co	ontact	
	ر	┘┝╼╓╼╼╌╲						<u>Y1</u>)	Х	0		Ser	rial connect	X0's A	
										OUT	Г	Y	1		Driv	ves coil Y1		

ANI Command Function Step Number ANI Serial connect B contact 1 Step

	Bi	t de	vice				Word device									External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-
Command description)	The ANI command serial connects B contacts. It reads the current status of the given serial contacts and executes the AND operation on the acquired data together with the outcomes from previous logic operations and saves the outcor in a cumulative register.									s of the lata e outcome						
		Ladder diagram:						Command co			de:		Description:				
Example		X1 X0				_	LD)		X1			Load	I X1's A con	tact		

ample	X1	XO	\frown
	╵┝╼╷┝─		— (Y1)
	•		\smile

Com	mand code:	Description:
LD	X1	Load X1's A contact
ANI	X0	Serial connect X0's B
		contact
OUT	Y1	Drives coil Y1

• OR

Command	Function	Step Number
OR	Parallel connect A contact	1 Step

	Bit	de	vice				Word o	device								External of	levice	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-	
Command		The	The OR command parallel connects A contacts. It reads the current status of the												e			
description	J	given serial contacts and executes the OR operation on the acquired data togeth with the outcomes from previous logic operations and saves the outcome in a											ner					
		cumulative register.																
		Lac	lder	dia	grar	n:			C	Command code:						Description:		
Example		X0								D		X0			Load	ad X0's A contact		
							- <u> </u>	- <u>Y1</u>				X1			Parallel connect X1's A			
													contact					
							C	UT		Y1			Drive	ves coil Y1				

• ORI

Command	Function	Step Number
ORI	Parallel connect B contact	1 Step

	Bit	t de	vice				Word o	device								External of	levice	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-	
Command	٦	The	The ORI command parallel connects B contacts. It reads the current status of the													atus of the		
description	J	given serial contacts and executes OR operation on the acquired data together with the outcomes from previous logic operations and saves the outcome in a											ogether ne in a					
		cumulative register.																
		Lac	lder	dia	grar	n:			C	Command code: Des						scription:		
Example	X0						_	L	LD X0					Load X0's A contact				
						C	ORI X1 P					Parallel connect X1's B						
	╽└╌╢╌┘													conta	act			

OUT Y1

• ANB

Command	Function	Step Number
ANB	Serial connect loop block	1 Step

	Bi	t de	vice				Word device									External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

Command description

The ANB command executes the AND operation on previously saved logic outcome and current value in a cumulative register.

• ORB

Command	Function	Step Number
ORB	Parallel connect loop block	1 Step

	Bit device						Word o	device	External device								
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

The ORB command executes the OR operation on previously saved logic outcomes and the current value in a cumulative register.

HMC Series User Manual

Comma	and code:	Description:
LD	X0	Load X0's A contact
ANI	X1	Parallel connect X1's B
		contact
LDI	X2	Load X2's B contact
AND	X3	Serial connect X3's A
		contact
ORB		Parallel connect loop
		block
OUT	Y1	Drives coil Y1

MPS

Command	Function	Step Number
MPS	Saves it in stack	1 Step

	Bit device Word device External devi	External device		
Operand	X Y M T C R KnX KnY KnM T C D V Z W Bit Wo	ord		
Command	Saves the current value contained in the cumulative register in a stack. (Standard index increase by 1)	ack		
description				

• MDR

Command	Function	Step Number
MDR	Read stack (Stack index remain intact)	1 Step

	Bit	devic	е			Word of	device		External device							
Operand	۲	/ M	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Charcter
	-															
Command description	_);	Saves ndex	the incre	curi ease	ent by	value c 1)	containe	ed in the	cui	mul	lativ	e r	egi	steri	in a stack.	(Stack

• MPP

Command

description

Command	Function	Step Number
MPP	Read stack	1 Step

Operand	Bi	t de	vice				Word device									External device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

Retrieves the last saved logic computing outcome and saves it in a cumulative register. (Stack index decrease by 1)

Comma	ind code:	Description
LD	X0	Load X0's A contact
MPS		Saves it in stack
AND	X1	Serial connect X's A
		contact
OUT	Y1	Drives coil Y1
MRD		Read stack (Stack
		the device of the test of the
		Index remain intact)
AND	X2	Serial connect X2's A
AND	X2	Serial connect X2's A contact
AND OUT	X2 M0	Serial connect X2's A contact Drives coil Y2
AND OUT MPP	X2 M0	Serial connect X2's A contact Drives coil Y2 Read stack
AND OUT MPP OUT	X2 M0 Y2	Serial connect X2's A contact Drives coil Y2 Read stack Drives coil Y2

• OUT

Command	Function	Step Number
оит	Drives coil	1 Step

	Bit	t de	vice				Word o	device	External device								
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-

Outputs the logic computing outcome before the OUT command to the given Command

components.

Coil contact action: description

		OUT comman	d		
	Computing		Contact		
	outcome	Coil	A contact		B contact
			(frequently op	pen)	(frequently close)
	FALSE	Off	Turns off		Turns on
	TRUE	On	Turns on		Turns off
Ladd	er diagram:		Comma	and code:	Description
Example X0	X1	(V/1)	LDI	X0	Load X0's B contact
			AND	X1	Serial connect X1's A
					contact
			OUT	Y1	Drives coil Y1

SET

Command	Function	Step Number
SET	Fix actions (ON)	1 Step

	Bi	t de	vice	:			Word of	device								External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-
Command description	$\Big)$	The bei	e SE ng S	ET c SET	om OF	mar F b	nd sets y RST	compo comma	nents as and.	sig	jne	d b	y it	to (ON a	nd remains	ON until
Ladder diagram: Command code: Description Example X0 Y0 LD X0 Load X0's ANI Y0 Serial con												on: s A contact nnect Y0's B					
											S	ET		Y		Fix Y1's a	iction (ON)

• RST

Command	Function	Step Number
RST	Clear contacts or registers	1 Step

	Bi	t de	vice				Word o	device			External device							
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	
	-	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-	
See the table below for actions of components driven by RST command:														1:				
Command			С	Components Status														
description)		S	S, Y, M Both coils and contacts are set Off.														
	Current timing and counting data are reset to 0 while co												coils and					
			'	, C			contacts are set Off.											
			D	, E,	F		Conte	nt value	es are re	set	to	0.						
		Sta	atus	of th	ne c	omp	onents	assigr	ned by R	ST	со	mm	and	d re	mair	ns intact if i	t was not	
		exe	ecute	ed.														
		La	dder	dia	grar	n:			C	Corr	nma	nd o	cod	e:	Des	scription:		

				Comma	and code.	Description.	
Example	X0	DOT	VE	LD	X0	Load X0's A contact	
		RST	YS	RST	Y5	Clear contact Y5	

• PLS

Command	Function	Step Number
PLS	Upper differential output	1 Step

	Bi	t de	vice				Word device									External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-
	-)	Up	per	diffe	ren	tial o	output o	comma	nd. Whe	n c	ond	ditio	nal	со	ntact	turns On	(positive
^{Command} edge triggering), the PLS command executes, S sends one pulse with a length												length of					
description)	one	one cycle time.														

Commar	nd code:	Description:						
LD	X0	Load X0's A contact						
PLS	MO	M0 upper differential						
		output						
LD	M0	Load M0's A contact						
SET	Y0	Y0 action retaining						
		(ON)						

• PLF

Command	Function	Step Number
PLF	Lower differential output	1 Step

	Bit	t de	vice				Word device									External device		
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	
	-	0	0	0	0	0	-	-	-	-	-	-	-	I	-	0	-	
Command		Lower differential output command. When conditional contact turns Off negative											negative					
description	J	one	e u e cyo	cle t	ime	, u 		COMMA		ute	35, 1	5 56	ents	5 01	ie pr	iise with a	length of	
		Lac	dder	dia	grar	n:					Со	mm	and	l co	de	Description		
Example)	X0					7		LD		X0			Load X0's A contact			
							PLF	MO			ΡL	F	M			M0 lower	differential	
		-	II-			- 5	SET	Y0								output		
		I					I				LD M0				Load M0's A contact			
		Tin	ning	diag	gran	n:					SE	Т		Y0		Y0 action retaining		
		X0														(ON)		
		M0Time of one scan cycle																
		Y0																
• MC/MCR

Command	Function	Step Number
MC/MCR	Connection/disconnection of common serial contacts	1 Step

Operand	N0 ~N7

Command

description

The MC command serves as the beginning of primary control. After it is executed, commands placed between MC and MCR commands run as usual. When the MC command is OFF, execution of commands placed between MC and MCR commands is described in table below:

Types of commands	Description						
Common timoro	Reset timing value, coil OFF, contacts remain						
Common umers	inactive						
Accumulativo timor	Coil OFF, counting values and contacts						
	remain as the current status.						
Countor	Coil OFF, counting values and contacts						
Counter	remain as the current status.						
Coils driven by OUT							
command							
Components driven by	Remain the current status						
SET and RST commands							
	Action remains intact. The FOR-NEXT nest						
Application commands	loop keeps running for N times. Commands in						
	the FOR-NEXT loop run in the same manner						
	as that of commands between MC and MCR.						

The MCR command is the primary control end command and is placed after cyclic task. No contact command is allowed before the MCR one.

The MC-MCR primary control commands support nest structure up to 8 layers from N0 to N7. See example program shown below for details:

		diagrar	n:	
Example			MC	N0
			YO	
		4,6	MC	N1
			Y1	
		<u>.</u>	MCR	N1
	×10		MCR	N0
		<u></u>	МС	N0
			Y10	
		~	MCR	N0

Command code: Description:

		•
LD	X0	Load X0's A contact
MC	N0	N0 common serial contacts'
		connection in existence
LD	X1	Load X1's A contact
OUT	Y0	Drives coil Y0
:		
LD	X2	Load X2's A contact
MC	N1	Connection of N1 common
		serial contacts
LD	X3	Load X3's A contact
OUT	Y1	Drives coil Y1
:		
MCR	N1	Disconnection of N1
		common serial contacts
:		
MCR	N0	Disconnection of N0
		common serial contacts
:		
LD	X10	Load X10's A contact
MC	N0	Connection of N0 common
		serial contacts
LD	X11	Load X11's A contact
OUT	Y10	Drives coil Y10
:		
MCR	N0	Disconnection of N0
		common serial contacts

• LDP

Command	Function	Step Number
LDP	Start of positive edge detection	1 Step

	Bit	t de	vice				Word device										External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM		Т	С	D	V	Ζ	W	Bit	Word
	0	0	0	0	0	0	-	-	-		-	-	-	-	-	-	0	-
Command description	The LDP command is used as the LD command but with a different function. It saves the current contents and saves the acquired contact's rising edge detection status in a cumulative register.																	
Ladder diagram:										Command code: De						De	escription:	
Example	LDP X0 X1 Htt Y1 LDP X0 X0: the positive edge detection operation star											e edge ation starts						
	AND X1 Serial connect X1's A contact													X1's A				
										OU	Т		Y1			Dri	ves coil Y1	

• LDF

Command	Function	Step Number
LDF	Start of negative edge detection	1 Step

	Bit	t de	vice				Word o	device								External device			
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word		
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-		
Command description Command Commando C																			
	Ladder diagram: Command code: Description:																		
Example	J		×0 ↓	X1 			- Y	<i>'</i> 1	LI	DF		X0			X0: tl	he negative	edge		

LDF	X0	X0: the negative edge
		detection operation starts
AND	X1	Serial connect X1's A
		contact
OUT	Y1	Drives coil Y1

HMC Series User Manual

• ANDP

Command	Function	Step Number
ANDP	Positive edge detection serial connection	1 Step

	Bi	t de	vice	:			Word of	device								External device		
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-	
The ANDP command serial connects the contact's rising edge detection.																		

Command

Ladder diagram:

Comma	nd code:	Description:						
LD	X0	Load X0's A contact						
ANDP	X1	X1 positive edge						
		detection serial						
		connection						
OUT	Y1	Drives coil Y1						

• ANDF

Command	Function	Step Number
ANDF	Negative edge detection serial connection	1 Step

Bit device					Word device									External device			
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-
Command description		The	e AN	İDF	con	nma	ind seri	al conr	ects the	со	nta	ct's	fal	ling	edg	e detectior	1.

$\overline{\qquad}$	Ladder	diagram:	
Example	×₀ ⊣ ⊢	X1 - ↓	Y1

Comma	nd code:	Description:							
LD	X0	Load X0's A contact							
ANDF	X1	X1: Negative edge							
		detection serial							
		connection							
OUT	Y1	Drives coil Y1							

• ORP

Command	Function	Step Number
ORP	Positive edge detection parallel connection	1 Step

	Bi	Bit device					Word device								External d	evice	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-
	7	The	e OF	RP c	om	mar	nd paral	lel con	nects the	e co	onta	act's	s ris	sing	edg	e detectior	۱.

Command

Example Ladder diagram:

Comma	nd code:	Description:						
LD	X0	Load X0's A contact						
ORP	X1	X1: Positive edge						
		detection parallel						
		connection						
OUT	Y1	Drives coil Y1						

• ORF

Command	Function	Step Number
ORF	Negative edge detection parallel connection	1 Step

	Bit device					Word	Nord device									External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	0	-
Command description	The ORF command parallel connects the contact's falling edge detection.										n.						
	Ladder diagram:									Command code: Do					De	escription:	
Example	Example X0 Y1							LD		X0 l			Lo	Load X0's A contact			
								ORF		X1 X1 det			X1 def	(1: Negative edge letection parallel			

OUT

Y1

connection

Drives coil Y1

• TMR

Command	Function	Step Number
TMR	16-bit timer	2 Step

Operand	T-K	T0~T255, K0~K32,767				
Operand	T-D	T0~T255, D0~D65,535				
After a TMP command is executed, the timer assigned by it turns On and starts						

After a TMR command is executed, the timer assigned by it turns On and starts timing. The timer's contacts function as shown in table below when setup time is reached (timing value >= setup value):

		NO(Normal	ly Open)	contact	Open			
		NC(Normal	ly Close)	contact	Close			
	_adder d	iagram:			Com	mand code:	Descript	ion:
Example	X0	TMR	T5	K1000	LD	X0	Load X0	's A contact
					TMR	T5 K1000	Timer T	5 is set to
							K1000	

CNT

Command description

Command	Function	Step Number
CNT	16-bit counter	2 Step

	С-К	C0~C199, K0~K32,767
Operand	C-D	C0~C199, D0~D65,535
(When the CN⊺	Γ command changes from Off to On, the coil of the counter assigned by

it switches from Off to On, leading to its counting value increasing by 1. The counter's contacts function as shown in table below when setup counts is reached (counting value >= setup value):

NO(Normally Open) contact	Open
NC(Normally Close) contact	Close

After the count settings is reached, the counter's contacts and counting values remain intact even when more counting pulse inputs are received. An RST command is required to restart counting or clear the value.

Comma	and code:	Description:
LD	X0	Load X0's A contact
CNT	C20 K100	Counter C20 is setK100

• DCNT

Command	Function	Step Number
DCNT	32-bit counter	3 Step

Operand	C-K	C200~C255, K-2,147,483,648~K2,147,483,647
Operatio	C-D	C200~C255, D0~D65,535

The DCNT is a 32-bit counter for counters C200 ~ C255 initiation.

Command description

General arithmetic counter C200~C255: When the DCNT command changes from Off to On, the counter's current value increases or decreases by 1 in setup mode to that of special R32~R87. When the DCNT command is OFF, its counters stop

counting and the existing values remain. An RST C2XX command is required to clear the counting values and its contacts.

	Ladder diag	gram:			C
Example	мо 	DCNT	C254	K1000	L

Comma	nd code:	Description:					
LD	M0	Load M0's A contact					
DCNT	C254 K1000	Counter C254 is set					
		to K1000					

• END

Command	Function	Step Number
END	Cyclic task ends	1 Step

	Bit device						Word device							External device			
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

The cyclic task has to be saved in END command. PLC scans from address 0 to END command. Then, return to address 0 to scan again.

After compiling, END command will be added into the software automatically.

• IRET

Command	Function	Step Number
IRET	Timer task ends	1 Step

	Bit device						Word device									External device	
Operand	Х	Y	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

Command description

The timer task has to be saved in IRET command. In timer task, PLC scans from address 0 to IRET command. Then, the timer task ends..

After compiling, IRET command will be added into the software automatically.

• SRET

Command	Function	Step Number
SRET	Sub program / Motion program end	1 Step

	Bit	t de	vice				Word device									External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

	~	The sub program / motion program have to be saved in SRET command. In sub
Command		
Commanu		program / motion program, PLC will scan from address 0 to SRET command. After
description	J	that, the scan of the sub program / motion program is complete.

After compiling, SRET command will be added into the software automatically.

• INV

Command	Function	Step Number
INV	Invert the computing outcome.	1 Step

	Bi	t de	vice				Word device									External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

Command description

Invert the logic outcome before the INV command and saves it in a cumulative register.

Comma	and code:	Description:
LD	X0	Load X0's A
		contact
INV		Computing
		outcome invert
OUT	Y1	Drives coil Y1

• NP

Command

description

Command	Function	Step Number
NP	Rising edge	1 Step

	Bit	t de	vice				Word device									External device	
Operand	Х	Y	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

Acquire the rising edge status from the logical computing result which is before NP command, then store it in accumulative register.

Comman	d code:	Description:							
LD	X0	Load X0's A contact							
LD	M1	Load M1's A contact							
NP		Computing result is							
		rising edge							
OUT	Y1	Drives coil Y1							

PN

Command	Function	Step Number
PN	Falling edge	1 Step

	Bit	t de	vice				Word device									External device	
Operand	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

Acquire the falling edge status from the logical computing result which is before PN command, then store it in the accumulative register.

Command	d code:	Description:					
LD	X0	Load X0's A contact					
LD	M1	Load M1's A contact					
PN		Computing result is					
		falling edge					
OUT	Y1	Drives coil Y1					

• NOP

Command

description

Command	Funciton	Step Number
NOP	No action	1 Step

	Bit	t de	vice				Word device								External device		
Operand	Х	Y	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word
	-																

Command description

The NOP command does not compute at all. After its execution, the logic computing outcome remains. If users desire to delete a statement in a program and keep the program size intact, then it can be replaced with a NOP command.

Example

Ladder diagram: The NOP command is omitted from the ladder diagram.

Comma	ind code:	Description:
LD	X0	Load X0's B contact
NOP		No action
OUT	Y1	Drives coil Y1

4.2 Application Command

•	LD%										
API											
001	C)	LD 🔆			Contact type compare LD%					

	Bit	dev	vice				Word	d devi	се							Externa	I device	
	Х	Υ	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (5 STEP)
S1							0	0	0	0	0	0	0	0	0		0	LD%
S2							0	0	0	0	0	0	0	0	0		0	
Notes	on t	he ı	use	of	ope	erar	nds: 🕅	» : =	· > · ·	< `	<>	` ≦		\geq				32-bit command (5 STEP)
																		DLD※
																		Flag signal: None

S1: Data source device 1. S2: Data source device 2.

This command compares values stored in S1 and S2. When the comparing result is enabled, the command turns on otherwise it does not turn on.

The LD% command may connect to a bus bar directily.

16-bit command	32-bit command	Turn-on condition	Not turn-on		
LD =	DLD =	S1 = S2	S1 ≠ S2		
LD >	DLD >	S1 > S2	$S1 \leq S2$		
LD <	DLD <	S1 < S2	$S1 \ge S2$		
LD < >	DLD < >	S1 ≠ S2	S1 = S2		
LD < =	DLD < =	$S1 \leq S2$	S1 > S2		
LD > =	DLD > =	$S1 \ge S2$	S1 < S2		

It has to use the 32-bit command (DLD %) to compare the 32-bit counter (C200~C255).

• AND 💥

┥┠

API				
002	D	AND 🔆	(S_1) (S_2)	

Bit device							Word	Nord device								Externa	I device	
	Х	Y	М	т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (5 STEP)
S1							0	0	0	0	0	0	0	0	0		0	AND%
S2							0	0	0	0	0	0	0	0	0		0	
Notes	on t	he ı	Jse	of	ope	erar	nds: 🕅	× : =	· > · ·	< `	<>	` ≦	≦``	\geq				32-bit command (5 STEP)
																		DAND
																		*
																		Flag signal: None

Command description

S1: Data source device 1. S2: Data source device 2.

This command compares values stored in S1 and S2. When the comparing result is enabled, the command turns on otherwise it does not turn on.

 \mathcal{I} The AND% is a compare command series connects to a contact.

16-bit	32-bit	Turn-on	Not turn-on
command	command	condition	condition
AND =	DAND =	S1 = S2	S1 ≠ S2
AND >	DAND >	S1 > S2	$S1 \leq S2$
AND <	DAND <	S1 < S2	$S1 \ge S2$
AND < >	DAND < >	S1 ≠ S2	S1 = S2
AND < =	DAND < =	$S1 \leq S2$	S1 > S2

AND > =	DAND > =	$S1 \ge S2$	S1 < S2	
---------	----------	-------------	---------	--

It has to use the 32-bit command (DAND%) to compare 32-bit counter (C200~C255).

Example

When X0 = On and the data contained in C10 equals to that in K200, then Y10 = On.

When X1 = Off and the data contained in register D0 is not equal to that in K-10, then Y11 = On and remains so.

When X2 = On and data contained in 32-bit register D0 (D11) are less than 678,493 or M3 = On, then M50 = On.

OR ※

	••••	`		
API				
003	D	UR 🔆	(S_1) (S_2)	Contact type compare OR *

	Bit	dev	vice				Word	d devi	се							Externa	I device	
	Х	Υ	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (5 STEP)
S1							0	0	0	0	0	0	0	0	0		0	OR%
S2							0	0	0	0	0	0	0	0	0		0	·
Notes	on t	he ı	Jse	of	ope	erar	nds: 🦻	× : =	· > · ·	< `	<>	` ≦	≦ `	\geq				32-bit command (5 STEP)
																		DOR※
																		Flag signal: None

Command

description

S1: Data source device 1. S2: Data source device 2.

This command compares values stored in S1 and S2. When the comparing result is enabled, the command turns on otherwise it does not turn on. The OR * is a compare command parallel connects to a contact.

16-bit 32-bit Turn-on Not turn-on command command condition condition S1 ≠ S2 OR = DOR = S1 = S2 $S1 \leq S2$ OR > DOR > S1 > S2 S1 < S2 $S1 \ge S2$ OR < DOR < S1 ≠ S2 OR < > DOR < >S1 = S2 $S1 \leq S2$ OR < =DOR < =S1 > S2 OR > =DOR > = $S1 \ge S2$ S1 < S2

X1 ┫┣ K200 OR= C10

Example

It has to use 32-bit command (DOR *) to compare the 32-bit counter (C200~C255). When X1 = On or the data contained in C10 equals to that in K200, then Y0 = On. When X2 and M30 is On, or the data contained in 32-bit register D100 (D101) is greater or equals to K100, 000, then M60 = On.

• MOV

Command

description

Example

API				
004	D	MOV		Niove data

	Bit	dev	vice				Word	d devi	се							Externa	l device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (5 STEP)
S							0	0	0	0	0	0	0	0	0		0	MOV
D								0	0	0	0	0	0	0	0		0	
Notes	on tl	ายเ	use	of	оре	erar	ids: S	oper	and c	an	use	e ex	ter	nal	dev	/ice, suc	h as	32-bit command (5 STEP)
KnDX,	Kn[DY,	DA	l ai	nd [DAC). D o	opera	nd ca	n u	se	Kn	ΟY	anc	I DA	AO exte	rnal	DMOV※
device	-																	Flag signal: None

S: Source of data. D: Destination of data to be moved to.

This command moves data contained in S to D. Contents contained in D remain intact.

For 32-bit outoput from computing outcomes (e.g. application command MUL) and current values of the 32-bit device's high speed counter, it moves them with the DMOV command.

____ Move 16-bit data with the MOV command.

When X0 = Off, contents of D10 remain intact. If X0 = On, it moves data contained in K10 to register D.

When X1 = Off, contents of D10 remain intact. If X1 = On, it moves the current value of T0 to register D10.

Move 32-bit data with DMOV command.

When X2 = Off, contents of (D31, D30) and (D41, D40) remain intact. If X2=On, it moves the current values of (D21, D20) to register (D31, D30) and that of C235 to register (D41, D40).

ΧO			
	MOV	K10	D0
X1			
⊢ Ĥ ⊢ −−	MOV	Т0	D10
X2			
	DMOV	D20	D30
	DMOV	C235	D40

BMOV

API			
005	BINOV		

\backslash	Bit	dev	vice				Word	d devi	се							Extern	al device	
	Х	Υ	М	т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (11 STEP)
S										0	0	0			0		0	BMOV
D										0	0	0					0	
n												0			0			32-bit command
Notes	on tl	he ı	lse	of	оре	ran	ds: S	oper	and c	an	use	e ex	teri	nal	dev	vice, su	ch as DAI	
and D/	40.																	Flag signal: None
D oper	D operand can use DAO as the external device.																	
N oper	N operand can use K device.																	

Command

description

S: Start of source device. D: Start of target device. n: Length of transmission block. Content of the nth register starting from the S specified device is converted to the one specified by D. If the number specified by n exceeds the range, the command will not be executed.

D3

D23

Example When X10 = On, content of register D0 ~ D3, will be transmitted to the four registers, D20 ~ D23. X10 BMOV D0 D20 K4 D0 D1 D20 D21 D20 CML

	••••=			
API				
006	D	CML		Invert transmission

\backslash	Bit	dev	ice				Word	l devi	се							External	device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (5 STEP)
S							0	0	0	0	0	0	0	0	0		0	CML
D								0	0	0	0	0	0	0	0		0	
Notes	on th	n the use of operands: S operand can use external device, such as 32-bit command (5 STEP)																
KnDX,	KnE	DY,	DA	l ar	nd E	DAC).											DCML
D oper	erand can use KnDY and DAO as the external device. Flag signal: None																	

Command description

S: Source of data to be transmitted. D: Target device of transmission. Invert $(0 \rightarrow 1, 1 \rightarrow 0)$ data contained in S and send to D. Automatically invert constant K to BIN value.

When X10 = On, invert D1's b0~b3 contents and send to Y0~Y3. Example 1 X10 CML D1 K1Y0 ┫┠ b₂ b₁ b 15 b₃ b₀ D1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Ł Л Sign bit (0 = positive, 1 = negative) 0 1 0 1

No data in existence

Invert contents for sending

BCD

API				
007	D	BCD		

	Bit	dev	vice				Word	d devi	се							Externa	I device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (5 STEP)
S												0	0	0			0	BCD
D												0	0	0			0	
Notes	on tl	ne ı	lse	of	ope	ran	ds: S	oper	and ca	an	use	ex	terr	nal o	dev	ice, sucl	h as DAI	32-bit command (5 STEP)
and D/	40.	Dо	per	and	d ca	an u	ise D	se DAO as the external device. DBCD								DBCD		
																		Flag signal: R20

S: Source of data. D: Outcome of conversion.

Do BCD conversion for BIN data contained in S and save in D.

Command description

When the BCD conversion output exceeds 0~9,999, and R20=On, the command error code is 01.

When the DBCD conversion output exceeds $0\sim99,999,999$ and R20 = On, the command error code W20 is 01.

The INC and DEC commands used by PLC's arithmetic operations are executed with values in BIN format. To see values displayed in decimal format, users need to convert values in BIN format to BCD one with the BCD conversion.

Example

When X0 = On, values in D10 are converted from BIN to BCD format and the digit in ones of the outcome is stored in bit elements K1Y0 (Y0~Y3).

	Î –	BCD	D10	K1Y0
--	-----	-----	-----	------

If D10 = 001E (Hex) = 0030 (decimal), then the outcome of execution is $Y0 \sim Y3 = 0000$ (BIN).

BIN

Command

description

-				
API				
800	D	BIN		

\backslash	Bit	dev	ice				Word	l devi	се							Externa	al device	
	X Y M T C R KnX KnY KnM T C D V Z W Bit Word											Word	16-bit command (5 STEP)					
S	3 00000													0	BIN			
D												0	0	0			0	
Notes	otes on the use of operands: S operand can use external device, such as DA															32-bit command (5 STEP)		
and DA	DAO. D operand can use DAO as the external device.															DBIN		
																		Flag signal: R20

S: Source of data. D: Outcome of conversion.

Do BIN conversion for source data in S (BCD: 0~9,999) and save in D. Valid range of source data in S is BCD (0~9,999) and DBCD (0~99,999,999). When the data contained in S is not BCD value (Any of the digit in Hex format is not within the range between 0 and 9.), computing error will occur. Then, R20 is On and the command error code, W20 is 04. Constant K is converted to BIN automatically, thus, no need to use this command.

● F	-CM	Ρ				
API						
009		FCMP		(S_2)	ய	Floating point number compare

D10

	Bit	dev	vice				Word	d devi	се							Externa	al device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	word	16-bit command
S1												0	0	0	0			
S2												0	0	0	0			
D		0	0															32-bit command (7 STEP)
Notes	s on the use of operands: S1 operand could use F device and so does S2.															FCMP		
																		Flag signal: None

S1: comparison value 1. S2: comparison value 2. D: comparison result.

Compare the comparison value 1 and 2 and place the outcome (>, =, <) in D.

Command description

When the comparison outcome > is established, the first bit of D is On; When the comparison outcome = is established, the second bit of D is On; When the

comparison outcome < is established, the third bit of D is On.

Example When M3 = On, compare the content of register D10 and D20 in floating point number format. When the value of D10 is greater than D20, M100 = On. When the value of D10 equilas to D20, M101 = On. When the value of D10 is less than D20, M102 = On.

•	FMO	V		
API				
050		FIVIOV		Assign all

\backslash	Bit	dev	ice				Word	d devi	се							Externa	l device	
	Х	Y	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	word	16-bit command (11 STEP)
S										0	0	0			0		0	FMOV
D O O O O O																		
n 0 0 0																		
Notes on the use of operands: S operand can use K device and external														32-bit command (11 STEP)				
device	evice, such as DAI and DAO.															DFMOV		
D oper	and	ca	า นร	se [DAC) as	s the	exter	nal de	evic	e; N	۱o	per	and	са	n use K	device.	Flag signal: None

S: Data source. D: Start of target device. n: Length of assigned block. The value of S is assigned to each device in a data block starting from the D specified and the block length is n. If the number specified by n exceeds the range, the command will not be executed.

REF

Command

description

API			VO refrach
010	REF		I/O refresh

\backslash	Bit	dev	vice				Word	d devi	се							Externa	I device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (2 STEP)
D 0 0 REF														REF				
n																		
Notes	Notes on the use of operands: D operand can use external device, DX and DY,														32-bit command			
which	shul	d s	eleo	ct th	ne r	nult	tiple c	of 16 a	as the	de	vic	e n	um	ber				
Range	of r	n op	era	nd:	16	~51	12, wl	hich is	s the i	mul	tipl	e of	f 16	ò.				Flag signal: None

D: The starting device for I/O refresh. n: Number of devices to be I/O refreshed. The I/O terminals are refreshed only after all their statuses are scanned. The status of the input device is read from the status of the external input point and saved in the input point's memory after the program scanning is started. Contents contained in the output terminal's memory are sent to output devices only after the END command is executed. Use this command to get the latest I/O data during computing.

\square	When $X0 = 0$	On, it read	is the stat	tus of the	input points X0~X17 and updates the								
Example input signals immediately (without any input delay).													
	I X0												
		REF	X0	K16									

•	ROR	R		
API				
011	D	ROR		Rotate right

	Bit	dev	ice				Word	d devi	се							Externa	l device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command(3 STEP)
D 0 0 0 0 0 0 0 0 0 ROR																		
n l l l l l l l l l l l l l l l l l l l																		
Notes	Notes on the use of operands: D operand can use external device, KnDY and															32-bit command (3 STEP)		
DAO.	AO.																DROR	
Range	of r	о ор	era	nd:	n =	= K	1~K1	6 (16-	-bit), r	า =	K1	~K3	82 (32-	bit)			Flag signal: R10

D: Device to be rotated. n: Number of bits to be rotated in one operation. Right rotate n bits of digit contained in device specified by D for one time.

Command description

When X0 changes from Off→On, the 16 bits of number kept in D10 right rotates in unit of 4 bits as shown in figure below. Marked bit value is sent to carry flag R10. Example X 0 ROR D10 K4 ┨┟ **Right rotation** Upper bits. Lower bits. - 10 D10 0 1 1 101101000101 1 R10 Carry flag 16 bits Rotate once L _ _ Upper bits. Lower bits. D10 0 1 0 1 0 1 R10 1 1 101 1 0 1 0 0 0 ¢ ŧ

•	ROL			
API				
012	D	KUL		Rotate ieit

\square	Bit	dev	vice				Word	d devi	ice							Externa	I device	
	Х	Y	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (3 STEP)
D 0 0 0 0 0 0 0 0 0 ROL																		
n A A A A A A A A A A A A A A A A A A A																		
Notes	Notes on the use of operands: D operand can use external device, KnDY and 32-bit command (3 STEF																	
DAO.	DAO.														DROL			
Range	of r	n op	era	ind	: n =	= K	1~K1	6 (16	-bit), r	า =	K1	~K3	32 (32-	bit)			Flag signal: R10

D: Device to be rotated. n: Number of bits to be rotated in one operation. Left rotate n bits of digit contained in device specified by D for one time.

description

When X0 changes from Off \rightarrow On, the 16 bits of number kept in D10 left rotates in unit of 4 bits as shown in figure below. Marked bit value is sent to carry flag R10. Example X 0 ┨╢ ROL D10 K4 Left rotation Upper bits. Lower bits. 4 1 1 0 0 0 0 0 0 0 0 D10 1 1 1 1 1 1 R10 Carry flag 16 bits Rotate once Upper bits Lower bits. 0 0 0 1 1 1 1 D10 R10 1 0 0 0 CJ API CJ S Conditional jump 013

\square	Bit device Word device External dev												nal device					
	Х	Υ	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (2 STEP)
Notes	ites on the use of operands:														CJ			
The S	∋ S operand can assign index P0~P255.															·		
																32-bit command		
																		Flag signal: None

S:	Command	indicator	of a	conditional	jump.	
					-	

Use the CJ command to skip a section of statements in an MLC program to reduce scan time.

Multiple CJ commands can point to one subject P. DO NOT point CJ and CALL commands to the same subject P as this may lead to a program error. Device actions when executing jump command:

Status of device Y, M, and S remains intact before jump command execution. The 10ms and 100ms timer stops timing.

Timer T192~T199 for sub program keeps on timing and the output contact functions normally.

Counter stops counting.

If the clear command of timer is executed before jumping, the device is in clear status when executing jumping, thus, the command will not be executed.

Command

description

When X0 = On, the program jumps from address 0 to N (the assigned label P1) for execution and ignore all statements in between.

When X0 = Off, the program executes from address 0 downward in sequence as common ones and ignores the CJ command.

CALL CALL CALL CALL CALL Call sub programs

	Bit	dev	vice				Wor	d dev	ice							Externa	al device	
	Х	Υ	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (2 STEP)
Notes	on t	he	use	of	оре	erar	nds: S	S ope	rand is	s th	e n	am	e o	f su	b p	rogram		CALL
																		32-bit command
																		Flag signal: R18

Command

description

S: Command indicator of calling sub program, which should be already existed. Call command call a sub program as many times as desired.

The CALL command can nest eight calling layers inclduing the original one.
 Subroutine called in the nineth layer does not run and will cause grammar error.
 Then, R18 = On and the grammar error code W18 is 06.

• LAUNCH

API			A stivete metion program
015	LAUNCH	6	Activate motion program

\square	Bit	dev	vice				Word	d devi	ice							Externa	al device	
	Х	Υ	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (2 STEP)
Notes	on t	he ι	Jse	of	ope	eran	ids: S	oper	and is	s th	e n	am	e o	f m	otio	n progra	am.	LAUNC
																		Н
																		32-bit command
																		Flag signal: R18

S: The called motion program has to be existed.

LAUNCH command can be used to call any motion program without limit number of times.

Command description

LAUNCH command cannot be used in motion program.

LAUNCH command can be used to call motion program without limit number of times in cyclic task or sub program. The number of motion program that is wating to be executed can up to 256. If it exceeds 256, the command which is called after that will not be executed and cause grammar error. Then, R18 = On and W18 is 12.

•	FOR			
API				
016		FOR		Nest loops start

\backslash	Bit device Word device Ex										Externa	I device						
	X	Υ	М	Т	С	R	KnX	KnY	KnM	т	С	D	V	Ζ	W	Bit	Word	16-bit command (3 STEP)
S												0	0	0			0	FOR
Notes	otes on the use of operands: S operand can use external device, DAO.																	
																		32-bit command
																		Flag signal: R18

S: Number of times the loop is to be executed.

Command

description

NEXT

API			Next loops and
017	NEXI	-	Nest loops end

\backslash	Bit	dev	/ice				Wor	d dev	/ice								Exter	nal device	
	X	Υ	Μ	Т	С	R	KnX	Kn	′ Kn	М	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (1 STEP)
Notes	on t	he	use	of	оре	erar	nds:												NEXT
No ope	operand is required. Connection point driven command does not follow.															·			
																			32-bit command
																			Flag signal: R18

The FOR command specifies the number of times a FOR~NEXT loop is to be executed. After the loop is ended, the program continues running from the statement next to the NEXT command.

✓ The valid range of repetition times is indicated by N=K1~K32,767. Any value of N less than K1 will be rounded to K1, when the range is N \leq K1. Users can use a CJ command to exit the FOR~NEXT loop.

Possible errors are:

1. The NEXT command precedes the FOR one.

2. The FOR command lacks an accompanying NEXT one.

3. END, SRET or IRET command follows by a NEXT one.

4. FOR and NEXT command are not in pair.

The FOR~NEXT loops can nest for up to 5 layers. If the nesting number exceeds the limit, grammar error might occur. Then, R18 = On and the grammar error code W18 is 05.

Example

Command

description

Program A continues running the subroutine next to the last NEXT command after being repeated 3 times. During each execution of program A, program B is executed for 4 times. That is, program B runs for 12 times in total.

ADD

Command

description

API				DIN eddition
018	D	ADD		

	Bit	dev	vice				Word	d devi	ce							Externa	l device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (7 STEP)
S1							0	0	0	0	0	0	0	0	0		0	ADD
S2							0	0	0	0	0	0	0	0	0		0	
D								0	0	0	0	0	0	0	0		0	32-bit command (7 STEP)
Notes	on t	the use of operands: S operand can use external device, KnDX,													DADD			
S2 ope D oper	eran and	d ca ca	ia L an i n us	JSE SE (o ar ext ext∈	tern tern	al dev	ce. vice, ice, K	KnDX (nDY	ί, K anc	nD` d D	Y, [AO	JAI	and	d D	AO and	K device.	Flag signal:R8, R9, R10

S1: Summand. S2: Addend. D: Sum.

Add values contained in data sources S1 and S2 in BIN format and save the sum in D.

⁷ The very first bit of each data represents it's positive (0) or negative (1). This enables algebraic addition operations like 3+(-9)=-6. Flag of addition:

16-bit BIN addition:

- 1. When the addition outcome is 0, the zero flag R8 is On.
- 2. When the addition outcome is less than -32,768, the borrow flag R9 is On.
- 3. When the addition outcome is greater than 32,767 the carry flag R10 is On.

32-bit BIN addition:

- 1. When the addition outcome is 0, the zero flag R8 is On.
- 2. When the addition outcome is less than -2,147,483,648, the borrow flag R9 is On.
- 3. When the addition outcome is greater than 2,147,483,647 the carry flag R10 is On.

Evample 1	16-bit BIN addit kept in D20.	ion: In cas	se X0=On	, the sum	of summa	and D0 and addend D10 is
		ADD	D0	D10	D20	

32-bit BIN addition: when X1=On, the sum of summand (D31, D30) and addend (D41, D40) is kept in (D51, D50) where D30, D40, and D50 are the lower 16-bit data while D31, D41, and D51 are the upper one.

	250
--	-----

SUB
 API
 SUB
 S1
 D
 BIN subtraction

\backslash	Bit	dev	vice				Word	d devi	се							Externa	al device		
	Х	Y	М	Т	С	R	KnX	KnY KnM T C D V Z W Bit Word 16-bit command (7 STEP)											
S1																			
S2																			
D	O O																		
Notes	lotes on the use of operands: S operand can use external device, KnDX,																		
S2 ope device	(nDY, DAI and DAO and K device. S2 operand can use external device, KnDX, KnDY, DAI and DAO and K device.																		
D oper	D operand can use external device, KnDY and DAO.																		

Comma descrip	and	S1: Subi sum The enal Flag	Minue tract in D. very oles a of su	end. S values first bi algebr ubtrac	32: Subra contain it of each aic subtr tion:	ihen ed ir n dat actic	d. D: D ı data : a repre ın oper	Vifferen source esnts it ration I	ice. s S 's p ike	1 and S2 ositive (0 3+(-9)=-6	2 in 0) o 6.	BIN ⁻ or neg	forma gative	at and e (1).	d save This	the
		16-b 1. \ 2. \ 3. \	it BIN Nhen Nhen Nher	l subti the a the a the a	raction: Iddition o Iddition o Iddition o	outco utcor outco	me is (me is le me is ç	0, the z ess tha greater	zerc n –: tha	o flag R8 32,768, th n 32,767	is (ne b ' the	On. oorrov e cari	v flag 'y flaç	R9 ii g R10	s On.) is On	I.
		32-b 1. 2. 3.	it BIN Wher Wher On. Whei	א subti the a the a the a the a	raction: addition c addition c addition c	outec outec	ome is ome is ome is	0, the less th greate	zero ian ·	o flag R8 –2,147,4 an 2,147	} is ∤83, ∕,48	On. ,648, ;3,64	the t 7 the	oorrov carry	w flag / / flag F	R9 is R10 is
Exam	ple 1) 16-b	On. it BIN (0 1	l subt	raction: \	Nhe T	n X0=(Dn, the	rer	nnant of	D0	less	D10	is ke	pt in D	20.
Evami		32-b	oit BIN	√ subt)51, D	raction: \ 50) whe	//////////////////////////////////////	n X1=(30, D4	On, the 0, and	rer D5(nnant of are the	(D3 e lov	31, D ver 1	30) l€ 6-bit	ess ([data	041, D while I	40) is D31,
Exam			, and (1 	D51 a	are the u	pper	one. D30	D4	0	D50]					
• ML	JL			т			T									
API 020 D	MUL			SI	S2 (D	BIN m	ultiplic	atio	n						
B	Bit device	3	١	Nord c	levice				Exte	ernal devi	ce					

\backslash	Bit	dev	rice				Word device									Externa	I device			
	Х	Y	М	Т	С	R	KnX	K KnY KnM T C D V Z W Bit Word 16-bit command (7 STE												
S1							0	0	0	0	0	0	0	0	0		0	MUL		
S2																				
D								0	0	0	0	0	0	0	0		0	32-bit command (7 STEP)		
Notes (otes on the use of operands: S operand can use external device, KnDX,																			
S2 ope device.	InDY, DAI and DAO and K device. 2 operand can use external device, KnDX, KnDY, DAI and DAO and K evice.																			
D oper	and	cai	า นร	se e	exte	erna	ıl dev	ice, K	nDY a	anc	I DA	40.								
16-bit o	6-bit command D operand takes consecutive 2 points.																			
32-bit o	32-bit command D operand takes consecutive 4 points.																			

Sign bit = 0 indicates positive number; sign it = 1 indicates negative number.

API				
021	D	DIV		BIN division

\square	Bit	dev	vice				Word device									Externa	I device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (7 STEP)
S1							0	0	0	0	0	0	0	0	0		0	DIV
S2																		
D	O O																	
Notes	lotes on the use of operands: S operand can use external device, KnDX, DDIV																	
S2 ope device	eran	d ca	an i	ise	ext	tern	al de	vice,	KnDX	ί, Κ	nD`	Y, C	DAI	and	d D	AO and	К	Flag signal: R20
D oper) operand can use external device, KnDY and DAO.																	
16-bit o	16-bit command D operand takes consecutive 2 points.																	
32-bit o	32-bit command D operand takes consecutive 4 points.																	

D: The target device.

Command description

This command increases the value contained in specified device D by 1 every time it is scanned by the program.

For 16-bit operation the sum of 32,767 and 1 is -32,768 and the sum of 2,147,483,647 and 1 is -2,147,483,648 for 32-bit operation.

 \sim When X0 = Off \rightarrow On, value of D0 increase by 1 automatically.

DEC

API				
023	D	DEC		BIN less one

\backslash	Bit	dev	vice				Word device									Externa	I device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (3 STEP)
D								0	0	0	0	0	0	0	0		0	DEC
Notes	on t	he ı	Jse	of	оре	erar	nds: D) oper	rand c	an	use	e e>	cter	nal	dev	vice, Kn	DY and	
DAO.																		32-bit command (3 STEP)
																		DDEC
																		Flag signal: None

D: The target device.

Command description

This command decreases value contained in specified device D by 1 every time it is scanned by the program.

For 16-bit operation the remnant of -32,768 less 1 is 32,767 and the remnant of -2,147,483,648 less 1 is 2,147,483,647.

	When X0 = C	0ff→On, \	alue of I	D0 decrease by 1 automatically.
Example		DECP	D0]

• WAND

API				
024	D	WAND		

	Bit	dev	vice				Word	l devi	се							Externa	I device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (7 STEP)
S1							0	0	0	0	0	0	0	0	0		0	WAND
S2	52 0 0 0 0 0 0 0 0 0 0 0 0 0													0				
												0	32-bit command (7 STEP)					
Notes KnDY, S2 ope	Image: Solution of the second card of t															DX, K	DWAN D	
device																		Flag signal: None
D oper	and	cai	n us	se e	exte	erna	il dev	ice, K	INDY :	anc	1D/	AO.						

Command

S1: Source data device 1. S2: Source data device 2. D: Operation outcome.

Do logic AND operation on data sources S1 and S2 and save its outcome in D.

['] The logic AND operation turns an outcome of 0 when either of its two values is 0.

When X0 = On, do WAND (logic AND) operation on 16-bit D0 and D2 and save the Example outcome in D4. X0 WAND D0 D2 D4 ┥┢ b15 b0 S1 D0 1 1 0000 1 1 1 1 1 1 1 1 1 1 Before execution WAND 00 S2 D2 0 0 0 1 0 1 0 0 1 0 0 0 Л After execution D D4 0 0 0 1 00 00 1 000 0 1 0 0

WOR

API				
025	D	WUR		OR operation

\backslash	Bit	dev	vice				Word	d devi	се							Externa	l device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (7 STEP)
S1							0	0	0	0	0	0	0	0	0		0	WOR
S2							0	0	0	0	0	0	0	0	0		0	
D O																		
Notes	tes on the use of operands: S operand can use external device, KnDX,															DWOR		
S2 ope device	erano	d ca	an u	ise	ext	tern	al de	vice,	KnDX	(, K	nD`	Y, E	DAI	and	d D	AO and	К	Flag signal: None
D oper	and	car	า นร	se e	exte	erna	il dev	ice, ĸ	IND Y	anc	1 D/	40.						

Command

description

S1: Source data device 1. S2: Source data device 2. D Operation outcome. Do logic OR operation on data sources S1 and S2 and save its outcome in D. The logic OR operation turns an outcome of 1 when either of its two values is 1.

WXOR

API				VOD energian
026	D	WXOR		XOR operation

\backslash	Bit	dev	ice				Word	d devi	се							Externa	I device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (7 STEP)
S1							0	0	0	0	0	0	0	0	0		0	WXOR
S2	\$2 0 0 0 0 0 0 0 0 0 0 0													0				
D O O O O O O O O O O O O O O O O O O O																		
Notes	tes on the use of operands: S operand can use external device, KnDX,															DWXR		
S2 ope device	erano	d Ca	an i	ise	ext	tern	al de	vice,	KnDX	ί, Κ	nD`	Y, C	DAI	and	d D	AO and	К	Flag signal: None
D oper	and	car	า นร	se e	exte	erna	l dev	ice, K	(nDY a	and	I D/	40.						

S1: Source data device 1. S2: Source data device 2. D: Operation outcome. Do logic XOR operation on data sources S1 and S2 and save its outcome in D. The logic XOR operation turns an outcome of 0 when both of its two values are the same and 1 when its two values differ from each other.

When X0 :	= On, do WXOR (logic XO	R) opera	ation on 16-bit D0 and D2 and save the
Example outcome in	n D4.			
	r			1
├1┣	WXOR D0	D2	D4	
I				
	b15			b0
	D00101	0 1 0 1	0 1 0	10101
Before execution		W	XOR	
	D20000	1 1 1 1	101	0 0 1 0 1
		-	Ū	
After execution	D40101	1010	1 1 1	10000

• NEG

API				Tuus's some laws and
027	D	NEG		I wo's complement

\backslash	Bit	dev	vice				Word	d devi	се							Externa	I device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	т	С	D	V	Z	W	Bit	Word	16-bit command (3 STEP)
D								0	0	0	0	0	0	0	0		0	NEG
Notes	es on the use of operands: D operand can use external device, KnDY and																	
DAO.																		32-bit command (3 STEP)
																		DNEG
																		Flag signal: None

D: The device where two's complement is required. This command converts negative BIN value into the absolute one.

When X0 = On, invert $(0 \rightarrow 1, 1 \rightarrow 0)$ every bit of digit contained in D10 and increase it by 1 to save in register D10.

Presentation of negative number and absolute value Digit in a register is either positive or negative according to value of its leftest bit: "0" indicate a positive number and "1" negative.

Users may convert a negative number into its absolute value with NEG command.

• FADD

	 _		
API			Diservite sting a sist such as addition
028	FADD		Binary floating point number addition

\backslash	Bit	dev	/ice				Word	d devi	ce							Externa	l device	
	Х	Υ	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S1												0	0	0	0		0	
S2												0	0	0	0		0	
D												0	0	0	0		0	32-bit command (7 STEP)
Notes	on tl	he ı	use	of	ope	erar	าds: S	51 ope	erand	co	uld	use	۶F	dev	vice			FADD
S2 ope	eran	d co	oulc	d us	se F	- de	vice											Flag signal: R8, R9, R10

•	FSU	В			
API					
029		FSUB	(\underline{S}_1) (\underline{S}_2)	B	Binary floating point number subtraction

	Bit	dev	vice				Word	d devi	ice							Externa	l device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S1												0	0	0	0		0	
S2												0	0	0	0		0	
													0	32-bit command (7 STEP)				
Notes	on t	he ı	use	of	оре	erar	nds: S	51 ope	erand	col	uld	use	۶F	dev	vice			FSUB
S2 ope	eran	d co	oulo	d us	se F	de	vice											Flag signal: R8, R9, R10

Command description	 S1: Minuend. S2: Subtrahend. D: Remnant. Subtract value contained in the register S1 by value contained in register S2 by value contained in register D with all operations executed in binary floating point number format. When the absolute value of the remnant is greater than the maximum value of floating point, the carry flag R10 turns On. When the absolute value of the remnant is less than the minimum value of floating point, the carry flag R9 turns On. When the remnant equals 0, the zero flag R8 turns On.
Example 1	When X0 = On, place the remnant of the binary floating point number (D1, D0) - binary floating point number (D3, D2) in (D11, D10).

FMUL

API			
030	FIVIUL		Binary floating point number multiplication

\backslash	Bit	dev	vice				Word	d devi	се							Externa	I device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S1												0	0	0	0		0	
S2												0	0	0	0		0	
D												0	0	0	0		0	32-bit command (7 STEP)
Notes on the use of operands: S1 operand could use F device													FMUL					
S2 ope	S2 operand could use F device															Flag signal: R8, R9, R10		

		_	S1: Multiplicand. S2: Multiplier. D: Product.
ſ	Command		Multiply the value contained in the register assigned by S1 and S2 save the
	description		product in the register assigned by D with all operations executed in binary floating
\sim	description	~	' point number format.
			When the absolute value of the product is greater than the maximum value of
			floating point, the carry flag R10 turns On.
			When the absolute value of the product is less than the minimum value of floating
			point, the carry hag R9 turns On. When the product equals 0, the zero fleg D8 turns On
			when the product equals 0, the zero hag Ro turns On.
			When X0 = On, places the product of the binary floating point number (D1, D0)
E	xample 1		multiply binary floating point number (D3, D2) in the register assigned by (D11
l	•		
			D10).
			X0
			FMUL D0 D2 D10
			When $X0 = On$, places the product of the constant F1.234568 × binary floating
E	xample 2	2	point number (D3, D2) in (D11, D10).
\subseteq			
			FMUL E1 234568 D2 D10

• FDIV

Command

description

API			Discryflacting point number division
031	FDIV		Binary lioating point number division

	Bit	dev	vice				Word	d devi	се							Externa	l device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S1												0	0	0	0		0	
S2												0	0	0	0		0	
D												0	0	0	0		0	32-bit command (7 STEP)
Notes	on tl	he ı	use	of	оре	erar	ids: S	51 ope	erand	col	uld	use	e F	dev	vice			FDIV
S2 operand could use F device													Flag signal: R8, R9, R10,					
														R20				

S1: Dividend. S2: Divisor. D: Quotient and remainder.

Divide value contained in the register S1 by value contained in the register S2 and save the quotient in the register defined by D with all operations executed in binary floating point number format.

If the value in S2 is 0, then the command is ignored with error message "computing error". Then, R20 = On, and the error code is 02.

When the absolute value of the quotient is greater than the maximum value of floating point, the carry flag R10 turns On.

When the absolute value of the quotient is less than the minimum value of floating point, the carry flag R9 turns On.

When the quotient equals 0, the zero flag R8 turns On.

	When X0	= On, pl	ace the rema	inder	of the bir	nary floating point number (D1, D0)
Example 1	divided by	y binary f	floating point	numb	er (D3, D	02) in the register assigned by (D11,
	D10).		DIV D0	D2	D10]
	When X0	= On, pl	ace the outco	ome o	f the bina	ary floating point number (D3, D2) ÷
Example 2	K1,23456	8 in (D1	1, D10).			
\square						
		FDIV	F1.234568	D2	D10	

• FINT

API			
032		s D	Binary floating point number \rightarrow Integer

	Bit	dev	ice				Word	l devi	се							Exterr	al device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			
Notes on the use of operands: S1 operand takes consecutive 2 points and can													and can	32-bit command (5STEP)				
use F device.														FINT				
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8

S: The source device to be converted. D: The conversion outcome. The value contained in the register assigned by S is converted from binary floating point number to BIN integer and saves in the register assigned by D with the integral floating point number being discarded. For conversion outcome in zero, the zero flag R8 = On.

Command

description

When X1 = On, convert binary floating point number (D21, D20) to BIN integer, save the outcome in (D31, D30), and discards the BIN integral floating point number.

• FDOT

API	FDOT		Integer Diner flecting point number
033	FDOT		Integer \rightarrow Binary loating point number

\backslash	Bit	dev	ice				Word	d devi	се							Extern	al device	
	Х	Y	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			
Notes on the use of operands: S1 operand takes consecutive 2 points and can														32-bit command (5STEP)				
use F d	use F device.														FDOT			
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8

S: The source device to be converted. D: The conversion outcome. The register content specified by S is converted to floating point number from BIN integer and saved in the register specified by D. For conversion outcome in zero, the zero flag P8 = On

For conversion outcome in zero, the zero flag R8 = On.

• FRAD

Command

description

API			Danna Dadian
034	FRAD		Degree \rightarrow Radian

\backslash	Bit	dev	ice				Word	l devi	се							Extern	al device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			
Notes on the use of operands: S1 operand takes consecutive 2 points and can														and can	32-bit command (5 STEP)			
use F d	use F device.															FRAD		
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8

S: Source data (degree). D: Conversion outcome (radian).

Converts the value in the unit of degrees to radians.

- $\int radian = degree \times (\pi/180)$
- The register content specified by S is converted to the radian in floating point number format from the degree in floating point number format and saved in the register specified by D.

If the outcome equals 0, the zero flag R8 turns On.

• FDEG

API			De l'en De sus s
035	FDEG		Radian \rightarrow Degree

\backslash	Bit	Bit device Word device											Extern	al device				
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (5 STEP)
S												0	0	0	0			BIN
D												0	0	0	0			
Notes	es on the use of operands: S1 operand takes consecutive 2 points and can															32-bit command (5STEP)		
use F d	use F device. DBIN																	
																		Flag signal: R20

S: Source data (radian). D: Conversion outcome (degree). Converts the value in units of radians to degrees.

Command description

degree = radian × $(180/\pi)$

The register content specified by S is converted to the degree in floating point number format from the radian in floating point number format and saved in the register specified by D. If the outcome equals 0, the zero flag R8 turns On.

FSIN FSIN S

\square	Bit	dev	vice				Word	d devi	се							Exter	nal device	
	Х	Υ	Μ	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			
Notes	s on the use of operands: S1 operand takes consecutive 2 points and can															32-bit command (5 STEP)		
use F d	devi	ce.																FSIN
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8

\backslash	Bit	Bit device Word device Exte												Extern	al device			
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			
Notes	es on the use of operands: S1 operand takes consecutive 2 points and can															32-bit command (5 STEP)		
use F d	devi	ce.																FCOS
D oper	and	tak	es (con	sec	cutiv	/e 2 p	oints										Flag signal: None

Command

S: Specified source value (floating point number). D: Acquire COS value (floating

description

point number).

Acquire COS value from the radian specified by S and save in the register specified by D.

The following shows the relation of radian and result:

Example

When M12 = On, acquire COS value from RAD value of (D11, D10) and save in (D21, D20), which is in floating point number format.

When M22 = On, convert the angle of (D11, D10) to RAD value and save in (D6, D5). Then, acquire COS value of (D6, D5) and save in (D21, D20), which is in floating point number format.

FTAN

	17 \		
API			TAN an anation in flacting point purchas format
038			I AN operation in floating point number format

\backslash	Bit	Bit device Word device														Extern	al device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			
Notes	otes on the use of operands: S1 operand takes consecutive 2 points and can															32-bit command (5 STEP)		
use F d	devi	ce.																FTAN
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8

Example

When M12 = On, acquire TAN value from RAD value of (D11, D10) and save in (D21, D20), which is in floating point number format.

When M22 = On, convert the degree of (D11, D10) to RAD value and save in (D6, D5). Then, acquire TAN value of (D6, D5) and save in (D21, D20), which is in floating point number format.

M12	FTAN	D10	D20
	TIM	DIU	D20
M22	FRAD	D10	D5
	FTAN	D5	D20

• FASIN

API			
039	FASIN		ASIN operation in floating point number format

\backslash	Bit	dev	vice				Word	d devi	се							Extern	al device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			
Notes	otes on the use of operands: S1 operand takes consecutive 2 points and can															32-bit command (5 STEP)		
use F d	devi	ce.																FASIN
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8, R20

• FACOS

API	F4000		
040	FACUS		ACOS operation in floating point number format

\backslash	Bit	Bit device Word device Externation												al device				
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			-
Notes	es on the use of operands: S1 operand takes consecutive 2 points and can															32-bit command (5 STEP)		
use F d	devi	ce.																FACOS
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8, R20

The cosine value specified by S operand can only between -1.0 and +1.0. If the value is not within the value, then R20 = On and W20 is 11. If the conversion result is 0, then R8 = On.

•	FATA	٨N		
API				
041		FATAN		A I AN operation in floating point number format

\backslash	Bit	dev	vice				Word	l devi	се							Extern	al device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command
S												0	0	0	0			
D												0	0	0	0			
Notes	on tl	าย เ	lse	of o	ope	ran	ds: S	1 ope	rand	take	es c	cons	sec	utiv	e 2	points	and can	32-bit command (5 STEP)
use F d	Jse F device. FATAN																	
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8

S: Specified tangent source (floating point number). D: Acquire radian result of ATAN value (floating point number).

```
ATAN value = tan-1
```

Following shows the relation of input data and result:

If the conversion result is 0, then R8 = On.

•	FSQ	R		
API				Square root operations in floating point number
042		FSQK		format

\backslash	Bit	dev	ice				Word	d devi	се							Extern	al device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	т	С	D	V	Z	W	Bit	Word	16-bit command
S												0	0	0	0			
D																		
Notes	otes on the use of operands: S1 operand takes consecutive 2 points and can 32-bit command (5 STEP)																	
use F d	use F device. FSQR																	
D oper	and	tak	es	con	sec	cutiv	/e 2 p	oints										Flag signal: R8

Command description

S: The source device is took square root (floating point number). D: Result of square root (floating point number).

The register content specified by S is took square root. The result is saved in the register specified by D and is in floating point number format.

If the source of S operands is constant K or H, the command will convert the constant into the floating point number for operation.

Only positive number is effective in source operand, the negative one will be regarded as operation error. In this situation, R20 = On and W20 is 12. If the result of square root is 0, R8 = On.

Example	When X0 = On, ta the result in regist	ke the squa er specified	are root I by (D1	of floatin 1, D10).	g point number, (D1, D0) and save
\square		FSQR	D0	D10]

• ZRST

• 2	_1\0	1		
API		7007		7
043		2831		Zone reset

	Bit	dev	ice				Word	d devi	се							Extern	al device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (4 STEP)
D1		0	0	0	0					0	0	0	0	0				ZRST
D2		0	0	0	0					0	0	0	0	0				
Notes	on tl	าย เ	ise	of o	ope	ran	ds: T	he D1	loper	anc	1 ID)≦	D2	оре	erar	nd ID		32-bit command
Both D	1 ar	nd E)2 c	pe	ran	ds r	nust	be as	signe	d to	o de	evic	es (of th	ne s	ame ty	pe.	
																		Flag signal: None

D1: Zone reset starting device. D2: Zone reset ending device.

The 16-bit and 32-bit counters can use the ZRST command together.

When D1 opernad ID > D2 operand ID, only the device assigned by D2 is reset.

Example

When X0 is On, auxiliary relays M300 ~ M399 are reset to Off.

When X1 is On, 16-bit counters C0 ~ C127 are all reset. (Overwrite with value 0 and reset contacts and coils to Off.)

When X10 is On, timer T0 ~ T127 are all reset. (Overwrite with value 0 and reset contacts and coils to Off.)

When X3 is On, data register D0 ~ D100 are all reset to 0.

I X0			
-ÎĨ	ZRST	M 300	M399
X1			
-îi	ZRST	C0	C127
X 10			
	ZRST	т0	T127
X3			
	ZRST	D0	D100

• DECO

API			Deceder
044	DECO		Decoder

\backslash	Bit	dev	ice				Word	d devi	се							Externa	I device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (5 STEP)
S	0	0	0							0	0	0	0	0		0	0	DECO
D		0	0							0	0	0	0	0		0	0	
n																		32-bit command
Notes	on tl	าย เ	lse	of	оре	eran	ids: S	oper	and c	an	use	e e>	kter	nal	dev	/ice, DX	, DY,	
DAI, D	I, DAO and K device. Flag signal: None																	
D can	Can use external device, DY and DAO.																	
n can ı	n can use K device.																	

S: Source device for decoding. D: Target device where decoded value is kept. n: Decoding bit length.

Decode the lower bits of the "n" bits in source device S and save its outcome of "2 n" bit length in D.

Example

When D is a bit device, $n = 1 \sim 8$. If n = 0 or n > 8, the error occurs. When n = 8, the DECO command can decode up to 256 (2⁸) points. (Please ensure that the range of storage devices after decoding is not duplicated.) When X10 = On, the DECO command decodes values stored in X0~X2 to M100~M107.

When data source is 1+2=3, then the 3^{rd} bit (M103) from M100 is set to 1. When the DECO command turns X10 to Off, those have been decoded continue the operation.

ENCO

API			Freeder
045	ENCO		Encoder

\square	Bit	dev	ice				Word	d devi	се							Externa	I device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (11 STEP)
S	0	0	0							0	0	0	0	0		0	0	ENCO
D										0	0	0	0	0			0	
n																		32-bit command
Notes	es on the use of operands: S operand can use external device, DX, DY,																	
DAI, D	AI, DAO and K device. Flag signal: R20																	
D can	can use external device, DAO.																	
n can ı	use	Κd	evi	ce.														

S: Source device for encoding. D: Target device where encoded value is kept. n: Encoding bit length.

Encode the lower bits of the "n" bits in source device S and save their outcome of " 2^{n} " bit length in D .

If more than one bit in data source is 1, the first 1 bit (the higherest one) will be processed.

If none of the bit in data source is 1, then R20 = On and W20 is 03.

When S is a bit device and $n = 1 \sim 8$, if n = 0 or n > 8, the error occurs.

Command

description

When n = 8, the ENCO command can encode up to 256 (2^8) points.

When X0 = On, the ENCO command encodes 8 (2³) bits of data (M0~ M7) and saves in the lower bits (b2~b0) of D0. Bits not used in D0 (b15~b3) are all set to 0. When ENCO command turns X0 to Off after its execution, data in D remains intact.

All are set to 0

BON

API				
046	D	BON		Bit ON detect

\backslash	Bit	dev	ice				Word	d devi	се							Externa	al device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (5 STEP)
S										0	0	0			0		0	BON
D										0	0	0					0	
n												0			0			32-bit command (5 STEP)
Notes	Notes on the use of operands: S operand can use external device, DAI and DBON										DBON							
DAO.	DAO. Flag signal: None																	
D can use external device, DAO.																		
n can use K device.																		

S^S: Source device. D: Target device for judgment outcome. n: Position of bit to be judged (beginning with 0).

Command

When X0 = On and the value of the 15^{th} bit in D0 is "1", then M0 = On. M0 = Off, the value is "0" instead.

Example

If X0 turns to Off, M0 remains intact.

• ALT

- /			
API			
047	ALI		UN/OFF alternate

\backslash	Bit	dev	vice			Word device											al device	
	Х	Υ	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Ζ	W	Bit	Word	16-bit command (2 STEP)
D		0	0			0										0		ALT
Notes	on t	he ı	use	of	оре	erar	nds: D) can	use e	xte	rna	l de	evic	e, I	ΟY			
																		32-bit command
																		Flag signal: None

D: Target device..

When ALT command is executing, D alternate On and Off.

Command description

Example

Y0 turns On when X0 changes from Off to On for the first time, then Y0 turns Off when X0 changes from Off to On for the second time.

RSVP

API			
048	RSVP		Read parameters of the servo drive

\backslash	Bit	dev	vice				Word	/ord device								Externa	al device	
	X	Υ	М	Т	С	R	KnX	KnY	KnM	т	С	D	V	Z	W	Bit	Word	16-bit command (13 STEP)
S1												0	0	0				RSVP
S2												0	0	0				
D												0	0	0				32-bit command
Notes	Notes on the use of operands: S1 operand can use K device;																	
S2 op	S2 operand can use K device; S3 operand takes consecutive.											Flag signal: R18						

- description

S1: Access servo axis ID of parameters. S2: Access parameter ID. D: Accessing result.

Access the servo parameter from S1. If reading P3-21, then value of S2 is 0321 (decimal). The accessing content is saved in the register specified by D. S2 format and servo dirve parameters.

	orvo anvo pare
S2	<u>AB CD</u>
Parameters	P <u>AB</u> - <u>CD</u>

Example of S2:

S2	0321
Parameters	P <u>03</u> - <u>21</u>

If the connection breaks down or read the incorrect parameters, it results in failure of reading parameters. Then, R18 = On and W18 is 11.

When M26 = On, access parameters (D10) from servo axis specified by the decimal system (D5) and save the result in (D21, D20).

M26				
\dashv \vdash \dashv	RSVP	D5	D10	D20

WSVP

API			Muite peremeters of the early drive
049	W2VP		while parameters of the servo drive

	Bit	dev	rice				Word	Vord device									I device	
	Х	Y	М	Т	С	R	KnX	KnY	KnM	Т	С	D	V	Z	W	Bit	Word	16-bit command (13 STEP)
S1												0	0	0				WSVP
S2												0	0	0				
D												0	0	0				32-bit command
Notes	on tl	he ı	Jse	of	ope	erar	ids: S	1 ope	erand	car	า นร	se ł	۲de	evic	e;]
S2 ope	S2 operand can use K device;												Flag signal: R18					
S3 ope	S3 operand takes consecutive and can use K device																	

Command description

S1: Write in servo axis ID of parameters.. S2: Write-in parameter ID. D: Source of write-in data.

S1 is the write-in servo axis ID. Assume that P3-21 is the write-in servo parameter, the setting value of S2 is 0321(decimal). Write the register content specified by D into the servo parameter.

S2 format and servo dirve parameters.

S2	<u>AB CD</u>
Parameters	P <u>AB</u> - <u>CD</u>

Example of S2:

S2	0321
Parameters	P <u>03</u> - <u>21</u>

If the connection breaks down or read the incorrect parameters, it results in failure of writing parameters. Then, R18 = On and W18 is 11.

ſ	Example	When M26 =	= On, wr system	ite the c (D5).	ontent of ((D21, D20) into parameters (D10) specified by
C)		WSVP	D5	D10	D20	

•	CKF	Z		
API				
051		CKFZ		Forbladen zone check

	Bit	dev	rice				Word device									Externa	l device			
	Х	Y	ΜТ		С	R	KnX KnY		KnM	Т	т С		V	Ζ	W	Bit	Word	16-bit command (13 STEP)		
S										0						CKFZ				
D 0 0																0		·		
Notes	on tl	he ı	Jse	of	оре	erar	ids: S	1 ope	erand	car	า นร	se ł	۲de	evic	;e			32-bit command		
S2 ope	S2 operand can use K device;																			
S3 ope	S3 operand takes consecutive and can use K device														Flag signal: None					

S: Start device stored forbidden zone and the line coordinate data. D: Result of intersection check.

Command description

The content of coordinate data is defined as below:										
S	Definition									
Dn	Start X coordinate of forbidden zone									
D(n+2)	Start Y coordinate of forbidden zone									
D(n+4)	Start Z coordinate of forbidden zone									
D(n+6)	End X coordinate of forbidden zone									
D(n+8)	End Y coordinate of forbidden zone									
D(n+10)	End Z coordinate of forbidden zone									
D(n+12)	Start X coordinate of line									
D(n+14)	Start Y coordinate of line									
D(n+16)	Start Z coordinate of line									
D(n+18)	End X coordinate of line									
D(n+20)	End Y coordinate of line									
D(n+22)	End Z coordinate of line									

If the intersection doesn't occur between forbidden zone and line, the result device will turn On.

Example

When M10 = On, check the intersection of coordinate data (D100 \sim D123). While it exists, the result (Y0) will be turned On. If it doesn't exist, the result will be Off.

.

Chapter 5 Example of Motion Command

5.1 Preparation

- Confirm the setting and servo drive version
 - Setup P3-00 for servo drive station number In DMCNet, it must have station 1.
 - Setup P1-01 in control mode of servo drive
 Set P1-01 to x00b means DMCNet communication
 - Setup P3-01 for servo drive communication
 Set P3-01 to 0203 for general servo drive
 Set P3-01 to 5203 for 4-axis synchronous servo drive
 - Setup P3-10 for servo CANOpen protocol
 Set P3-10 to 11 for use the complete CANOpen DS402 protocol and the motor will servo off while disconnected.
- Clear the alarm of servo drive
 - Servo drive's alarm reset, set [Fault Reset](R592, R593, R594,...) to On
 - Make sure [Servo Fault](R1104, R1105, R1106,...) is set to Off
 - Make sure [Servo Warning](R1120, R1121, R1122,...) is set to Off
- Servo activate
 - The servo axis that executes motion has to be activated. Set [Servo On](R576, R577, R578,...) to On.
 - Make sure the servo drive is On. Set [Servo On](R1072, R1073, R1074,...) to On.
- Release Quick Stop
 - [Quick stop](R528, R529, R530,...) of the servo axis that executes motion has to be Off.
 - Make sure the quick stop status of the servo drive is released. Set [Servo quick stop release](R1088, R1089, R1090, ...) to On.
 - If the quick stop status cannot be released, please check the DI setting of the servo drive.
- Others
 - When it is not in Handwheel status, make sure [Handwheel activate](R608, R609, R610, ...) is set to Off.

5.2 JOG

- Example description
 - Use M500 as the forward jog control bit of the 1st axis and M501 as the reverse jog control bit of the 1st axis.
- Example program

L

Cyclic Task

M500			
	DMOV D500	W678	
		JOG s	5
		peed(3
M501			
1/500			
		SET	R544
		021	TOG C
			W#axi
M500			
M		RST	R544
			JOG C
			W#axi
M501			
		SET	R560
			JOG C
			CW#a
M501			
Wi		RST	R560
			JOG C
			CW#a

- a. When the status of M500 or M501 turns On, write the setting value of D500 into [Jog Speed]W678 (Jog speed of the 1st axis)
- b. When M500 turns On, set [Forward Jog] R544 to On, the 1st axis will execute jog in forward direction.
- c. When M500 turns Off, set [Forward Jog] R544 to Off, the 1st axis will stop jog in forward direction.
- d. When M501 turns On, set [Reverse Jog] R560 to On, the 1st axis will execute jog in reverse direction.
- e. When M501 turns Off, set [Reverse Jog] R560 to Off, the 1st axis will stop jog in reverse direction.
- Note
 - The jog speed cannot exceed the maximum speed limit, or the servo drive will has no action after being triggered.
 - If forward jog and reverse jog is activated in the same axis, the priority will be given to the first activated one.
 - Setup [Jog torque limit](W682, ...) to enable the torque limit protection function when Jog is activated.

5.3 Single Axis Linear Motion

• Example description

•

•

•

- Use M510 as the enabling condition for triggering and executing linear motion of single axis. After M510 is activated, related parameters will be executed and starts to issue the motion command.
- Example program
 - Cyclic Task

M510	MOV	K0	D10
			Flow Contro
		CALL	line

- a. When the status of M510 turns On, it is in initial control status (D10=0).
- b. When M510 is On, it enters the sub program, line, to execute linear motion of single axis. After the motion is completed, M510 is Off.
- Sub program: Line

4=	D10	K0				MOV	K1	W512
	Flow Contro							Comm and co
						MOV	K1	W513
								Comm
								and op
			D	MOV	D510		W518	
							speed s etting(
			D	MOV	D512		W520	
			P511				Target positio	
							SET	R512
			Comm and ex					Comm and ex
							INC	D10
								Flow Contro
4=	D10	кı	R1040 R1056				RST	R512
1	Flow Contro		Comm Target and rea reach#					Comm and ex
							INC	D10
								Flow Contro
- =	D10	K2	R512				RST	M510
	Flow Contro		Comm and ex					
							INC	D10
								Contro
								SRET

- a. When D10 = 0, it starts to write parameters. Set [Command code](W512) to 1, it means linear motion; Set [Command selection](W513) to 1, it means to execute the single axis motion selection of the 1st axis. Write D510 into [Speed setting](W518) of the 1st axis and write D512 into [Target position](W520) of the 1st axis. Trigger [Command start](R512) to On and then D10 = 1.
- b. When D10 = 1 and [Command ready](R1040) is On, it means the motion is executing. When [Command complete](R1056) is On, it means the motion is completed. Then, set [Command start](R512) to Off and D10 = 2.
- c. When D10 = 2, it means the motion is completed. Make sure [Command start](R512) is set to Off. Then clear the executed flag, M510 to Off. The control procedure is completed.
- Note
 - If the speed is greater than [Max. speed limit], it will operate at the limited max. speed.

5.4 3-axis Synchronous Linear Motion

- Example description
 - Use M530 as the enabling condition for triggering and executing 3-axis synchronous motion. After M530 is activated, the related parameters are executed and start to issue the command. Linear motion path of the 3-axis is shown in the diagram below.

- Example program
 - HMC screen

Cyclic Task

	M530 W	MOV	K0	D30 Multi Flow
$\left \right $	M530		CALL	Three line

- a. When M530 turns On, it is in initial control status (D30=0).
- b. When M530 is On, it enters sub program, three_line, to execute 3-axis synchronous motion. After the motion is completed, M530 is Off automatically.

•

Sub program: Three_line

Lı	D 20	720	L				MON	171	11/510
Π-	Multi	K0	П				MOV	KI	Comm
	Flow								and co
							MOV	K 7	W513
							1410 1	117	Comm
									and op
					DMOV	D510		W518	
								speed s	
								etting(
			ł		DMOV	D510		W774	
								speed s	
								<u>s</u> (
			ł		DMOV	D510		W1030	
								etting(
					DMOV	D512		W520	
					DMOV	0512		Target	
								positio	
					DMOV	D514		W776	
								Target	
								positio	
			ł		DMOV	D516		W1032	
								Target positio	
				R512				-	
				Comm				1 SEI	Comm
				and ex					and ex
			l					INC	D30
									Multi
				R1040 R1056					Flow
=	D30	Kl	┢					RST	R512
	Multi Flow			Comm Target and real reach#					Comm and ex
	1100			and real reachty					and ex
								INC	D30 Multi
									Flow
	D30	22	L	R512				POT	M530
1-	Multi	R2	Ι	Comm				1001	M330
	Flow			and ex					
								INC	D30
									Multi
									rlow
									SRET

- a. When D30 = 0, it starts to write the command. Set [Command code] (W512) to 1 which means linear motion is executed. When [Command selection](W513) is set to 7, it represents the 3-axis motion of axis 1, 2, and 3. Write D510 into [Speed setting](W518, W744, W1030) of each axis. Write D512 into [Target position](W520) of axis 1; Write D514 into [Target position](W776) of axis 2 and write D516 into [Target position](W1032) of axis 3. Then, trigger [Command start](R512) to On and D30 = 1.
- b. When D30 = 1, [Command ready](R1040) is On, which means the 3-axis synchronous motion is being executed. When [Command completed](R1056) is On, it means the motion is completed. Then, set [Command start](R512) to

Off and D30 = 2.

- c. When D30 = 2, the motion is completed. Make sure [Command start](R512) is Off and set flag, M530 to Off. The control procedure is completed.
- Note
 - If the speed is greater than [Max. speed limit], it will operate at the limited max. speed.
 - At non-vector speed or in multi-axis linear motion with the specified speed, the servo drive will operate base on the speed which with the longest traveling distance and adjust the speed of other axes so as to accomplish synchronous linear motion.

5.5 4-axis Synchronous Linear Motion (Special Type)

- Example description
 - Use M531as the enabling condition for triggering and executing 4-axis synchronous linear motion. After M531 is activated, the related parameters will be executed and issue the command.
- Example program
 - HMC screen

Cyclic task

M	531 M	MOV	K0	D30 Multi
м	531 I 		CALL	Four Moving

- a. When M531 turns On, it is in initial control status (D30=0).
- b. When M531 is On, it enters sub program, Four_Moving, to execute 4-axis synchronous motion. After that, M531 is Off automatically.

•

=	D30 Multi	K0	ђ		 	 			MOV	K24	W512 Comm
	Flow										and co
							DMOV	D510		W518	
										speed etting(5
							DMOV	D512		W520	
										Target positio	,
							DMOV	D514		W776	
										Target	
										positio)
							DMOV	D516		W1032	2
										Target positio)
							DMOV	D518		W1288	3
										Target positio	,
				R512						SET	R512
				Comm and ex							Comm and ex
										INC	D30
				B1040 B1056							Multi Flow
4=	D30	K1	⊢							RST	R512
	Multi Flow		'	Comm Target and rea reach#							Comm and ex
										INC	D30
											Multi Flow
=	D30 Multi	K2	\vdash	R512	 	 				RST	M531
	Flow			and ex							
				L	 					INC	D30
											Multi Flow
											SRET

Sub program: Four Moving

- a. When D30 = 0, it starts to write parameters. Set [Command code](W512) to 24 means to execute 4-axis synchronous linear motion. Write D510 into [Speed setting](W518) of axis 1, D512 into [Target position](W520) of axis 1, D514 into [Target position](W776) of axis 2, D516 into [Target position](W1032) of axis 3 and D518 into [Target position](W1288) of axis 4. Then, trigger [Command start](R512) to On and D30 = 1.
- b. When D30 = 1, if [Command ready](R1040) is On, it means the 4-axis synchronous linear motion is being executed. When [Command ready](R1056) is On, it means the motion is completed. Set [Command start](R512) to Off and D30 = 2.
- c. When D30 = 2, it means the motion is completed. Make sure [Command start](R512) is Off. Set flag, M531 to Off and the control procedure is completed.

Note

- The 4-axis synchronous linear interpolation is for the special function of ASDA-M servo drive. When issuing the command to the servo drive, the 4-axis synchronous servo drive will execute the interpolation. Please refer to appendix C for the using framework and setting.
- If the speed is greater than [Max. speed limit], it will operate at the limited max. speed.
- It only needs to issue the speed command to axis 1.

5.6 Forward Speed

- Example description
 - Use M400 as the enabling condition for triggering and executing forward speed motion. After M400 is executed, the related parameters will be executed and issue the command.

• Example program

Cyclic task

M400	 MOV	K0	D20
	 	RST	R512
M400	 	CALL	and ex P Speed

- a. When M400 turns On, it is in initial control status (D20=0) and resets [Command start](R512) at the same time.
- b. When M400 is On, it enters sub program, P_Speed, to execute multi-axis forward speed motion. After the motion is completed, M400 is Off automatically.

•

D20 K0 MOV K4 W512 Comm and co MOV W513 D400 Comm and op DMOV D500 W518 speed s etting(R512 SET R512 47F Comm Comm and ex and ex INC D20 R1040 RST R512 D20 K1 Comm Comm and rea and ex INC D20 R512 RST D20 K2M400 Comm and ex INC D20 SRET

Sub program: P_SPEED

- a. When D20 = 0, it starts to write parameters. Set [Command code](W512) to 4 means the operation at forward direction is executed. Write D400 into [Command selection](W513) to activate forward speed axis (Bit 0 is On means axis 1 is activated; while Bit 1 is On means axis 2 is activated.). Write D500 into [Speed setting](W518). Then, trigger [Command start](R512) to On and D20 = 1.
- b. When D20 = 1 and [Command ready](R1040) is On, it means the operation at forward direction is executed. Since the status of [Command complete] will not be changed when executing speed command, flag of [Command start](R512) can be Off directly and D20 = 2.
- c. When D20 = 2, make sure [Command start](R512) is Off. After that, set M400 to Off and the control procedure is completed.
- Note
 .
 - If the operation speed is greater than [Max. speed limit], it will operate with the limited max. speed.
 - Forward speed operation should be stopped by deceleration stop command or flag of [Quick stop].
 - When speed command at forward or reverse direction is executed, issuing the motion command again will cause command error.

5.7 Reverse Speed

• Example description

•

- Use M410 as the enabling condition for triggering and executing operation at reverse speed. After M410 is activated, the related parameters will be executed and issue the command.
- Example program
 - Cyclic task

- a. When M410 turns On, it is in initial control status (D20=0) and resets [Command start](R512) at the same time.
- b. When M410 is On, it enters sub program, N_Speed, to execute multi-axis reverse operation. Then, M410 will be Off automatically.

Sub program: N_SPEED

- =	D20	K0	<u> </u>		MOV	K5	W512
							Comm and co
					MOV	D400	W513
							Comm and op
			DM	OV D500		W518	
						speed : etting(5
						SET	R512
			Comm and ex				Comm and ex
						INC	D20
	D 20	וש	R1040			POT	P\$12
7-	D20	RI .	Comm and rea			1.51	Comm and ex
						INC	D20
- =	D20	K2	R512 Comm			RST	M410
			and ex			INC	D20
							SRET

a. When D20 = 0, it starts to write parameters. When [Command code](W512) is set to 5, it means the operation is at reverse direction. Write D400 into

[Command selection](W513) to select reverse speed axis (When Bit 0 is On, it means axis 1 is activated; Bit 1is On means axis 2 is activated.). Write D500 into [Speed setting](W518). Then, trigger [Command start](R512) to On and D20 = 1.

- b. When D20 = 1 and [Command ready](R1040) is On, it means reverse operation is executed. Since the status of [Command complete] will not be changed when executing speed command, flag of [Command start](R512) can be Off and D20 = 2.
- c. When D20 = 2, make sure [Command start](R512) is Off. Then set flag, M410 to Off and the control procedure is completed.
- Note
 - If the operation speed is greater than [Max. speed limit], it will operate at the limited max. speed.
 - Reverse speed operation should be stopped by deceleration stop command or flag of [Quick stop].
 - When speed command at forward or reverse direction is executed, issuing the motion command again will cause command error.

5.8 Decelerate to Stop

- Example description
 - Use M420 as the enabling condition for triggering and executing deceleration to stop command. After M420 is activated, the related parameters are executed and issue the command.
- Example program
 - Cyclic task

M420	MOV	K0	D20
		RST	R512 Comm
M420		CALL	and ex STOP Speed

- a. When M420 turns On, it is in initial control status (D20=0) and resets [Command start](R512) at the same time.
- b. When M420 is On, it enters sub program, STOP_Speed, to execute deceleration to stop command. After that, M420 is Off automatically.

•

Sub program: STOP_SPEED

1.1			1			
H=	D20	K0		MOV	K6	W512
Ľ						Comm
						and co
				MOV	D400	W512
				WOV	D400	Comm
						and on
			R510			and op
					SET	R512
			Comm			Comm
			and ex			and ex
					INC	D20
			B10/0 B10//			
4=	D20	11			RST	R512
1-	1020	AI	Comm Tarret		1001	Comm
			and rea reach#			and ex
					INC	D20
1_			R512		DOT	24420
Π=	D20	K2			KSI	M420
			Comm			
			and ex			
					INC	D20
						SRET

- a. When D20 = 0, it starts to write parameters. When [Command code](W512) is set to 6, it means the deceleration to stop operation is executed. Write the value of D400 into [Command selection](W513) to select stop axis (When Bit 0 is On, it means axis 1 is activated. Bit 1 is On means axis 2 is activated.). Then, trigger [Command start](R512) to On and D20 = 1.
- b. When D20 = 1 and [Command ready](R1040) is On, it means deceleration to stop command is enabled. When [Command complete](R1056) is On, the command is stopped. Set [Command start](R512) to Off and D20 = 2.
- c. When D20 = 2, make sure [Command start](R512) is Off. Then, set flag M420 to Off and the control procedure is completed.
- Note
 - Deceleration to stop command uses [Deceleration time of stop command](W670,...) as the time basis.

5.9 Homing

- Example description
 - Use M550 as the enabling condition for triggering and executing homing. After
 M550 is activated, the related parameters are executed and issue the command.
- Example program

•

•

Cyclic task

M550			
M	MOV	K0	D50 Homin
1550			g Flow
		CALL	Home 1

- a. When M550 turns On, it is in initial control status (D50=0).
- b. When M550 is On, it enters sub program, Home_1, to execute homing of single axis. After that, M550 is Off automatically.
- Sub program: Home_1

L	DS0 PO	L																																																																											_	2.4	0	T.	-	Т	70			11	75.1	1	٦
Π-	Homin	Π																																																																											٦	IM	<u></u>	v	_	- 1	20			- <u>~</u>	<u></u>		_
	g Flow																																																																																					a	nd	-cc	ŝ
	-																																																																												,												
					 			_	_		_	_	-	-	-	-	-	-	-		-	-															-	-	-	-	_	_	-	-	-	-	_	_	_	_	_	_			 _	_	_	 _	_	 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	┥	Μ	0	V	<u>_</u>	K	(1			W	/51	3	_
																																																																																						C	on	am	1
																																																																																						a	na	ol)
					 				_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_				_			 	_		 		 	_	_	_	_				I	21	M	0	V	Ι	05	5	0	_	_	_	_		V	N6	48	}				1
																																																																																		ŀ	Io	mi	n				
																																																																																		8	(S]	pee	e				
																																														_																						ſ	וכ	M	0	v	T	25	5	2	_		_	_	_	V	<i>N</i> 6	50					-
																																																																				-			<u> </u>					-	_	_	_	_	_	Ī	Ho	mi	'n	_	_	_	-
																																																																																		2	5 51	pee	е				
																																																																													г		_		_	_	_			_		_	_
																																																				-	_	_																					_	-	٦	M	0	V	_		250	50		- M	/63	<u>52</u>	_
																																																																																						g	m	nu od	1
																																																																				_							_	_	_		_	_	_					_		_	
					 			_	-		-	-		-	-	-	-	-	-		-	-															-	-	-		-	-		-		-	-	-	_	_	_	_			 _	-	_	 _	_	 _	-	-	-	-	_	_	_	I	DI	M	0	V	Ι	25	6	2	_		_	_	_	V	<u> W6</u>	54		_		_	
																																																																																		F	loi	mi	n				
			P512																																																																															8	g 01	IIS	e				
					 								_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_									 			 		 																_					_	S	ET			R	51	2	٦
			Comm																																																																																			С	on	am	1
			and ex																																																																																			a	nd	e2	2
																																														_																																				T	NC			Г	150	_	٦
																																																																																				-		F	lon	nir	4
																																																																																						g	Fle	ov	7
		T	R1040 R1056	5																																																																															_			_		_	_
1=	D50 KI	F				Γ				Γ																																				1						_		_																					_	-	_		_	_	-		SI			<u></u>	<u>51</u>	2	_
	g Flow		and rea reach#	t ∉																																																																																		a	nd nd	en en	1
	511011																																																																																	_				_		_	
						L	L	_	_	L	-		-	_	_	_	_	_	_		_	_															_	_	_	-	_	_	-	_	-	-	_	_	_	_	_	_			 _	_	_	 _	_	 _	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	1	NC	2		D	50		
																																																																																						H	lon	niı	1
			B610																																																																																			g	r1	οv	7
H=	D50 K2	F							_		_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_		_		_	_	_				_			 	_		 		 	_	_	_	_												_			_		_	R	ST		_	N	155	50	-
1	Homin	'	Comm																																																																																						
	g Flow		and ex																																																																																						
											_		_	_	_	_	_	_	_		_	_															_	_	_	_			_	_	_	_																	_																			T	NC	×		Г	50	_	-
																																																																																		11	COC.	-		F	lon	niı	
																																																																																						g	Fl	ov	ī
																																																																																						_	_	_	_
					 		_	-	-	_	-	-					-																								-	-				-	-	-	-	-	-	_	_		 	-		 		 	-	-	-	-				-							_	-	_	_	_	_	_			_	-	S	RE'	Т	

- a. When D50 = 0, it starts to write parameters. Set [Command code](W512) to 8, homing is executed. When [Command selection](W513) is set to 1, it means axis 1 is executed. Write the setting value of D550 into [First speed of homing](W648), D552 into [Second speed of homing](W650), D560 into [Homing mode](W652) and D562 into [Offset amount of homing](W654). Then, trigger [Command start](R512) to On and D50 = 1.
- b. When D50 = 1 and [Command ready](R1040) is On, it means the command has been executed. When [Command complete](R1056) is On, the operation is completed. Then, set [Command start](R512) to Off and D50 = 2.
- c. When D50 = 2, the operation is completed. Make sure [Command start](R512) is Off and set flag, M550 to Off. The control procedure is completed.
- Note
 - If the operation speed is greater than [Max. speed limit], it will operate at the limited max. speed.
 - Through the setting of [Command selection], it can activate multi-axis, that is corresponded to bit, to conduct homing.

5.10 Arc: Radius & Angle

- Example description
 - Use M540 as the enabling condition for triggering and executing arc motion. After M540 is executed, the related parameters are activated and issue the commands.
 - Arc motion needs to issue three parameters, [Radius], [Initial angle] and [Motion angle]. If the start address of data parameter is D1000, then D1000 represents [Radius](PUU), D1002 represents [Initial angle] and D1004 represents [Motion angle]. Please pay attention that the unit of angle is 0.5 degrees. That is to say, if the setting value is 180, it means it is in 90 degrees. According to the setting, the motion path shows as below:

- Example program
 - HMC screen

M54	.0	MOV	K0	D40
M54	10		CALL	Curve 10

- a. When M540 turns On, it is in initial control status (D40=0).
- b. When M540 is On, it enters sub program, Curve_10, to execute arc motion. After that, M540 is Off.

- D40 K0MOV K10 W512 Comm and co MOV D509 W513 Comm and op MOV K512 W524 Contin uous p DMOV D510 W518 speed s etting(R512 SET R512 Comm Comm and ex and ex INC D40 R1040 R1056 RST D40 K1 R512 Comm Target Comm and rea reach# and ex INC D40 R512 RST M540 D40 K2 Comm and ex INC D40 SRET
- Sub program: Curve_10

- a. When D40 = 0, it starts to write parameters. Set [Command code](W512) to 10 means to execute arc motion. Write D509 into [Command selection](W513), it means to execute axis selection. 0 represents the arc interpolation of X and Y axis; while 1 represents the arc interpolation of Y and Z axis and 2 represents the arc interpolation of X and Z axis. Set [Parameter start address](W524) to 512, which means to access parameters starting from D512. Write D510 into [Speed setting](W518) of axis 1. Then, trigger [Command start] (R512) to On. Parameters and arc data, including [Radius] D512, [Start angle] D514 and [Motion angle] D516, will be written into the servo drive and D40 = 1.
- b. When D40 = 1, if [Command ready](R1040) is On, it means the arc motion is executing. When [Command complete](R1056) is On, it means the command is completed. Then, set [Command start](R512) to Off and D40 = 2.
- c. When D40 = 2, command is completed. Make sure [Command start](R512) is Off. After that, set flag, M540 to Off and the control procedure is completed.
- Note
 - Arc motion issues the command to three axes for one time. Thus, the command only can be issued to ASDA-M for executing arc interpolation of 3-axis.
 - For 3-axis servo drive, when two axes are executing arc motion, the other one will
be unable to execute other commands.

Set the angle to the positive value, which represents counterclockwise direction. On the contrary, if the value is set to negative, it represents clockwise direction.

5.11 Arc: Midpoint & End Point

- Example description
 - Use M541 as the enabling condition for triggering and executing arc motion. After activating M541, the related parameters are activated and issue the commands.
 - Arc: Midpoint & End point should issue four parameters, including [Midpoint coordinate 1](A1), [Midpoint coordinate 2](B1), [End point coordinate 1](A2) and [End point coordinate 2](B2). If the data start address is D1000, then D1000 represents [Midpoint coordinate 1](PUU), D1002 represents [Midpoint coordinate 2](PUU), D1004 represents [End point coordinate 1](PUU) and D1006 represents [End point coordinate 2](PUU). According to the setting, the motion path shows as below:

b. When M541 is On, it enters sub program, Curve_11, to execute arc through three points. After that, M541 is Off.

T.

•

H=	D40	K0			MOV	K11	W512
							Comm
							and co
					MOV	D509	W513
							Comm
							and op
					MOV	K512	W524
							Contin
							uous p
			DMO	V D510		W518	
						speed s	5
			P610			etting(
						SET	R512
			Comm				Comm
			and ex				and ex
						INC	D40
			B1040 B1054				
H=	D40	K1				RST	R512
1'			Comm Target				Comm
			and rea reach#				and ex
						INC	D40
			2010				
4=	D40	K2				RST	M541
1			Comm				
			and ex				
						INC	D40
							2.0
							SRET

Sub program: Curve_11

- a. When D40 = 0, it starts to issue parameters. Set [Command code](W512) to 11, which means to execute arc: midpoint & end point motion. Write D509 into [Command selection](W513) means to execute axis selection. Among them, 0 represents the arc interpolation of X and Y axis, 1 represents the arc interpolation of Y and Z axis and 2 is the one for X and Z axis. Set [Parameter start address](W524) to 512 means it starts to read parameters starting from D512. Write D510 into [Speed setting](W518). Then, trigger [Command start](R512) to On. After that, write parameters, including [Midpoint coordinate 1](D512), [Midpoint coordinate 2](D514), [End point coordinate1](D516) and [End point coordinate 2](D518) into the servo drive and D40 = 1.
- b. When D40 = 1 and [Command ready](R1040) is On, it means the arc motion is executing. When [Command complete](R1056) is On, it means the motion is completed. Set [Command start](R512) to Off and D40 = 2.
- c. When D40 = 2, the command is completed. Make sure [Command start](R512) is Off. Then, set flag, M541, to Off and the control procedure is over.
- Note
 - Arc motion issues the command to three axes for one time. Thus, the command only can be issued to ASDA-M for executing arc interpolation of 3-axis.

For 3-axis servo drive, when two axes are executing arc motion, the other one will be unable to execute other commands.

5.12 Arc: Center & End Point

- Example description
 - Use M542 as the enabling condition for triggering and executing arc motion. After activating M542, the related parameters are executed and issue the commands.
 - Arc: center & end point motion should issue parameters, including [Center coordinate 1](A1), [Center coordinate 2](B1), [End point coordinate 1](A2), [End point coordinate 2](B2) and [Reverse and forward direction]. If data start address is D1000, D1000 represents [Center coordinate 1](PUU), D1002 represents [Center coordinate 2](PUU), D1004 represents [End point coordinate 1](PUU), D1006 represents [End point coordinate 2](PUU) and D1008 represents [Reverse and forward direction]. According to the setting, the motion path shows as below:

- Example diagram
 - HMC

•

Cyclic task

M542 IN	MOV	K0	D40
M542		CALL	Curve 12

- a. When M542 turns On, it is in initial control status (D40=0).
- b. When M542 is On, it enters sub program, Curve_12, to execute arc motion. When the command is completed, M 542 is Off.
- Sub program: Curve_12

1			1			
H=	D40	K0	П	MOV	K12	W512
						Comm
						and co
				- MOV	D509	W513
						Comm
						and op
				MON	17510	11/2 2 4
				MOV	K512	W024
						Contin
						uous p
			DMOV D51	0	W518	
					speed	5
					etting(
			R512		-	
					SET	R512
			Comm			Comm
			and ex			and ex
					INC	D40
1			R1040 R1056		D 0 T	D (10)
Η=	D40	KI			KST	K012
			Comm Target			Comm
			and real feach#			and ex
					INC	D40
					INC	D40
			P510			
H=	D40	K2			RST	M542
l'	2		Comm			
			and ex			
					INC	D40
						SRET
1						

a. When D40 = 0, it starts to issue parameters. Set [Command code](W512) to 12, means to execute arc: center & end point motion. Write D509 into [Command selection](W513), means to execute axis selection. Among them, 0 represents the arc interpolation of X and Y axis. 1 represents the arc interpolation of Y and Z and 2 represents the one of X and Z axis. Set [Parameter start address](W524) to 512, means to access parameters starting from D512. Write D510 into [Speed setting](W518). Then, trigger [Command start](R512) to On. After that, write parameters, including [Center coordinate 1](D512), [Center coordinate 2](D514), [End point coordinate 1](D516), [End point coordinate 2](D518) and [Reverse and forward direction](D520) into the servo drive and D40 = 1.

- b. When D40 = 1 and [Command ready](R1040) is On, it means the arc motion is executing. When [Command complete](R1056) is On, it means the command is completed. Then, set [Command start](R512) to Off and D40 = 2.
- c. When D40 = 2, the command is completed. Make sure [Command start](R512) is Off. Then, set flag, M542 to Off and the control procedure is completed.
- Note
 - Arc motion issues the command to three axes for one time. Thus, the command only can be issued to ASDA-M for executing arc interpolation of 3-axis.
 - For 3-axis servo drive, when two axes are executing arc motion, the other one will be unable to execute other commands.
 - If the value is set to 1, it represents counterclockwise direction. On the contrary, if the value is set to 0, it represents clockwise direction.

5.13 Arc: End Point & Radius

- Example description
 - Use M543 as the enabling condition for triggering and executing arc motion. After activating M543, the related parameters are executed and issue the commands.
 - Arc: end point & radius motion should issue parameters, including [End point coordinate 1](A1), [End point coordinate 2](B1), [Radius] and [Reverse and forward direction]. If data start address is D1000, D1000 represents [End point coordinate 1](PUU), D1002 represents [End point coordinate 2](PUU), D1004 represents [Radius] (PUU) and D1006 represents [Reverse and forward direction]. According to the setting, the motion path shows as below:

• Example program

HMC screen

Cyclic task

٠

M543 	MOV	K0	D40
M543		CALL	Curve 13

- a. When M543 turns On, it is in initial control status (D40 = 0).
- b. When M543 is On, it enters sub program, Curve_13, to execute arc motion. When the command is completed, M543 is Off.
- Sub program: Curve_13

- a. When D40 = 0, it starts to issue parameters. Set [Command code](W512) to 13, means to execute arc: end point & radius motion. Write D509 into [Command selection](W513), means to execute axis selection. Among them, 0 represents the arc interpolation of X and Y axis, 1 represent the arc interpolation of Y and Z axis and 2 represents the one of X and Z axis. Set [Parameter start address](W524) to 512, means to read parameters starting from D512. Write D510 into [Speed setting](W518). Then, trigger [Command start](R512) to On and write parameters, including [End point coordinate 1](D512), [End point coordinate 2](D514), [Radius](D516) and [Reverse and forward direction](D518) into the servo drive and D40 = 1.
- b. When D40 = 1 and [Command ready](R1040) is On, it means the arc motion is executing. When [Command complete](R1056) is On, it means the command is completed. Set [Command start](R512) to Off and D40 = 2.
- c. When D40 = 2, the command is completed. Make sure [Command start](R512) is Off. Then set flag, M543 to Off and the control procedure is over.

Note

- Arc motion issues the command to three axes for one time. Thus, the command only can be issued to ASDA-M for executing arc interpolation of 3-axis.
- For 3-axis servo drive, when two axes are executing arc motion, the other one will be unable to execute other commands.
- If the value is set to 1, it represents counterclockwise direction. On the contrary, if the value is set to 0, it represents clockwise direction.

5.14 Arc: Center & Angle

- Example description
 - Use M544 as the enabling condition for triggering and executing arc motion. After activating M544, the related parameters are executed and issue the commands.
 - Arc: center & angle motion should issue parameters, including [Center coordinate 1](A1), [Center coordinate2](B1) and [Angle]. If data start address is D1000, D1000 represents [Center coordinate 1](PUU), D1002 represents [Center coordinate2](PUU) and D1004 represents [Angle] setting. Please pay attention that the angle unit is 0.5 degrees, that is to say, if the value is 180, it means 90 degrees. According to the setting, the motion path shows as below:

- Example program
 - HMC screen

- a. When M544 turns On, it is in initial control status (D40 = 0).
- b. When M544 is On, it enters sub program, Curve_14, to execute arc motion. When the command is completed, M544 is Off.

•

. .

H=	D40	K0		M	ov	K14	W512
1.							Comm
							and co
				10	017	D500	11/512
				M	UV.	D309	Comm
							and op
				M	ov	K512	W524
							Contin
							uous p
			DMOV I	0510		W518	
						speed s	;
						etting(
			R512			opp	D 510
						SET	K012
			and ex				and ex
							and ch
						INC	D40
			514/4 514/2				
4=	D40	K1	R1040 R1056			RST	R512
1	1040	A.	Comm Target			1001	Comm
			and rea reach#				and ex
						INC	D40
			P510				
4=	D40	K2				RST	M544
1'			Comm				
			and ex				
						1010	D 40
						INC	D40
							SRET
1							

Sub program: Curve_14

- a. When D40 = 0, it starts to issue parameters. Set [Command code](W512) to 14, means to execute arc: center & angle motion. Write D509 into [Command selection](W513), means to execute axis selection. Among them, 0 represents the arc interpolation of X and Y axis, 1 represents arc interpolation of Y and Z axis and 2 represents X and Z axis. Set [Parameter start address](W524) to 512, means to read parameters starting from D512. Write D510 into [Speed setting](W518). Then, trigger [Command start](R512) to On and write parameters, including [Center coordinate 1](D512), [Center coordinate 2](D514) and [Angle](D516) into the servo drive and D40 = 1.
- b. When D40 = 1 and [Command ready](R1040) is On, it means the arc motion is executing. When [Command complete](R1056) is On, it means the command is completed. Then, set [Command start](R512) to Off and D40 = 2.
- c. When D40 = 2, the command is completed. Make sure [Command start](R512) is Off. Then, set flag, M544 to Off and the control procedure is over.
- Note
 - Arc motion issues the command to three axes for one time. Thus, the command only can be issued to ASDA-M for executing arc interpolation of 3-axis.
 - For 3-axis servo drive, when two axes are executing arc motion, the other one will

- be unable to execute other commands.
- Set the angle to the positive value, which represents counterclockwise direction. On the contrary, if the value is set to negative, it represents clockwise direction.

5.15 Helical

- Example description
 - Use M560 as enabling condition for triggering and executing helical motion. After activating M560, the related parameters are executed and start to issue commands.
 - Helical motion is the combination of arc motion and the height interpolation of another axis. Four parameters are needed, including [Radius], [Initial angle], [Motion angle] and [Height]. If the data start address is D1000, then D1000 represents [Radius](PUU), D1002 represents [initial angle], D1004 represents [Angle] and D1006 represents [Height](PUU). Please pay attention that the angle unit is 0.5 degrees. That is to say, 180 = 90 degrees. According to the setting, the motion path shows as below:

• Example program

HMC screen

Cyclic task

•

M560	MOV	K0	D40
M560		CALL	Spiral

- a. When M560 turns On, it is in initial control status (D40 = 0).
- b. When M560 is On, it enters sub program, Spiral to execute helical motion. After that, M560 is Off.
- Sub program: Spiral

a. When D40 = 0, it starts to issue parameters. Set [Command code](W512) to 30, means to execute helical motion. Write D509 into [Command selection](W513), means to execute axis selection. Among them, 0 represents the arc interpolation of X and Y axis, 1 represents the arc interpolation of Y and Z axis and 2 represents the one of X and Z axis. Set [Parameter start address](W524) to 512, means it access the parameters starting from D512. Write D510 into [Speed setting](W518). Then trigger [Command start](R512) to On. Write parameters, including [radius](D512), [Initial angle](D514), [Motion

angle](D516) and [Height](D518) into the servo drive and D40 = 1.

- b. When D40 = 1 and [Command ready](R1040) is On, it means helical motion is executing. When [Command complete](R1056) is On, it means the command is completed. Set [Command start](R512) to Off and D40 = 2.
- c. When D40 = 2, the command is completed. Make sure [Command start](R512) is Off. Then, set flag, M560 to Off and the control procedure is over.
- Note
 - Helical motion issues the command to three axes for one time. Thus, the command only can be issued to ASDA-M for executing arc interpolation of 3-axis.
 - Set the angle in helical parameter to the positive value, which represents counterclockwise direction. On the contrary, if the value is set to negative, it represents clockwise direction.

5.16 Helical W

- Example description
 - Use M561 as the enabling condition for triggering and executing helical W motion. After M561 is activated, the related parameters are executed and issue the commands.
 - Refer to the current position, helical W motion completes the settings of center coordinates, helical radius, pitch, total pitch number and final offset angle. Thus, helical W needs to issue five parameters, including [Center coordinate 1], [Center coordinate 2, [Pitch], [Total pitch number] and [Offset angle]. If the data start address is D1000, then D1000 represents [Center coordinate 1], D1002 represents [Center coordinate 2], D1004 represents [Pitch], D1006 represents [Total pitch number] and D1008 represents [Offset angle]. Pay special attention that the angle unit is 0.5 degrees, which means 180 = 90 degrees. According to the setting, the motion path shows as below:

- Example program
 - HMC screen

•

Cyclic task

M561 W	MOV	K0	D40
M561		CALL	Spiral W

- a. When M561 turns On, it is in initial control status (D40 = 0).
- b. When M561 is On, it enters sub program, Spiral_W to execute helical W. Then, set M561 to Off.
- Sub program: Screw_W

a. When D40 = 0, it starts to issue parameters. Set [Command code](W512) to 31, means to execute helical W motion. Write D509 into [Command selection](W513), means to execute axis selection. Among them, 0 represents the arc interpolation of X and Y axis, 1 represents the arc interpolation of Y and Z axis and 2 represents the one of X and Z axis. Set [Parameter start address] (W524) to 512, means it reads parameters starting from D512. Write D510 into [Speed setting](W518). Then, trigger [Command start](R512) to On and write parameters, including [Center coordinate 1](D512), [Center coordinate 2]

(D514), [Pitch](D516), [Total pitch number](D518) and [Offset angle](D520) into the servo drive. D40 = 1.

- b. When D40 = 1 and [Command ready](R1040) is On, it means helical W motion is executing. When [Command complete](R1056) is On, it means the command is completed. Set [Command start](R512) to Off and D40 = 2.
- c. When D40 = 2, the command is completed. Make sure [Command start](R512) is Off. Then, set flag, M561 to Off and the control procedure is completed.
- Note
 - Helical W motion issues the command to three axes for one time. Thus, the command only can be issued to ASDA-M for executing arc interpolation of 3-axis.
 - If the value of pitch and offset angle is set to positive, it represents counterclockwise direction; on the contrary, if the value is set to negative, it represents clockwise direction.

5.17 Continuous PR Path

- Example description
 - Use M610 as the enabling condition for triggering and executing continuous motion.
 - After activating M610, setup the number of [Co. PR No.](4 paths are showed at most in the example). Download the data from Path#1 to Path#4 in the screen to the servo. If set [Co. PR No.] to 3, only three continuous motion, Path#1 ~ Path#3 are loaded in and executed.
- Example program
 - HMC screen

Four PR data can be entered to the screen at most. When activating continuous motion, load in the setup number to the servo drive according to [Co. PR No.]. Following is the setup screen of HMC.

Con. Start(M610)	Con. No.(D2000)	Speed(D2010)	
	####	#########	
Path #1	Path #2	Path #3	Path #4
Cmd(D2100)	Cmd(D2200)	Cmd(D2300)	Cmd(D2400)
####	####	####	####
Axis no(D2101)	Axis no(D2201)	Axis no(D2301)	Axis no(D2401)
####	####	####	####
OVLP(D2102)	OVLP(D2202)	OVLP(D2302)	OVLP(D2402)
####	####	####	####
data#1(D2110)	data#1(D2210)	data#1(D2310)	data#1(D2410)
#########	#########	#########	#########
data#2(D2120)	data#2(D2220)	data#2(D2320)	data#2(D2420)
#########	#########	#########	#########
data#3(D2130)	data#3(D2230)	data#3(D2330)	data#3(D2430)
#########	#########	#########	#########
data#4(D2140)	data#4(D2240)	data#4(D2340)	data#4(D2440)
##########	#########	#########	#########

Cyclic task

•

M610	MOV	K0	D9999
	MOV	K0	Vl
	MOV	K0	D90
M610		CALL	Continue

- a. When M610 status turns On, it is in initial control status D90, V1 (parameter offset) and D9999 (continuous PR number that has been issued successfully).
- b. When M610 is On, call sub program, Continue, to issue and execute continuous PR command. After that, M610 is Off.

•

Sub program: Continue

o				
P1 -=	D90	K0	MOV	D2100VW512
				Comm
				and co
			MOV	D2101VW513
				Comm
				and op
			MOV	K1000 W524
				Contin
				uous p
			MOV	D2102VW525
				Overla
				p inde
			DMOV D2010	W518
				speed s
				etting(
			DMOV D2010	W774
				speed s
				etting(
			DMOV D2010	W1030
				speed s
				etting(
			DMOV D2010	W1286
				speed s
				etting(
			DMOV D2110V1	W520
				Target
				positio
			DMOV D2120V1	W776
				Target
				positio
			DMOV D2130V1	W1032
				Target
				positio
			DMOV D2140V1	W1288
				Target
				positio
			DMOV D2110V1	D1000
			DMOV D2120V1	D1002
			DMOV D2130V1	D1004

- a. When D90 = 0, it starts to issue commands. Write D2100 into [Command code](W512) and D2101 into [Command selection](W513). Set [Parameter start address](W524) to 1000 and write D2102 to [Overlap](W525), D2010 to [Speed setting](W518, ...) of each axis and write D2110, D2120, D2130 and D2140 into [Target position](W520, ...) of each axis. If the command is not linear motion, but arc or helical motion, parameters shall be accessed via referral data zone. Thus, write D2110, D2120, D2130 and D2140 into the referral data zone starting from D1000. Then, trigger [Command load](R624) to On and D90 = 1.
- b. When D90 = 1, trigger [Command load](R624) until [Command ready](R1040) is On, which means this motion is successfully loaded into the servo drive and add 1 to the value of [Command number that has been issued](D9999). Then, D90 = 2.
- c. When D90 = 2, check if the command number is the same as it set first (D2000

is the setting of command number). If not, load in the next command to the servo drive. First, increase the command offset value V1 (When the value is added 100, it should refer to Path#2; 200 is for Path#3 and so on and so forth.). Return to D90 = 0 and issue the command (CJ P1); If the issued command number is enough, no need to load other commands and D90 = 3.

- d. When D90 = 0 again for N times, it means to issue motion parameters. Write D(2100+100x(*N*-1)) into [Command code](W512), D(2101+100x(*N*-1)) into [Command selection](W513), D(2102+100x(*N*-1)) into [Overlap](W525), D2010+100x(*N*-1)) into [Speed setting](W518, ...) of each axis and the starting address of D(2110+100x(*N*-1)) into [Target position](W520, ...) of each axis. Also, write the starting address of D(2110+100x(*N*-1)) into the continuous address of PR data zone starting from D1000. After that, trigger [Command load](R624) to On, D90 = 1 and repeat step b.
- e. When D90 = 3, wait until all continuous motion command is completed, which means [Command complete](R1056) is On. Then, D90 = 4 and M610 is Off.
- Note
 - The continuous path can issue unlimited number of motion parameters to the servo drive. The number of motion that is waited to be executed in servo drive is 8 at most. Trigger the next motion command by [Command load] right after a command is completed will do.
 - In continuous motion, the command will not be executed until two PR commands (at least) are issued.
 - In continuous motion, when executing the last command, no more new command can be accepted.
 - When using [Command load] to issue the command, users could know if the command issuing is succeed via [Command ready] and acquire the information of unfinished command number of the current servo drive through [Motion surplus].

5.18 Handwheel

- Example description
 - Connect the handwheel device to HMC08 and switch the factors (1, 10 and 100 times) and control axis (axis 1, 2, and 3) via I/O device. Use handwheel to send signal to X0 means to activate axis 1; send signal to X1 means to activate axis 2 and send signal to X2 means to activate axis 3. Send signal to X3 means to switch the factor to 1, X4 means to switch the factor to 10 and X5 means to switch the factor to 100.
- Example program
 - Cyclic task

- a. When X0 is On, X1 is Off and X2 is Off, R608 is On, R609 is Off and R610 is Off. Set [Handwheel activate] of axis 1 to On. Then, the handwheel function of axis 1 is enabled.
- b. When X1 is On, X0 is Off and X2 is Off, R608 is Off, R609 is On and R610 is Off. Set [Handwheel activate] of axis 2 to On. Then, the handwheel function of axis 2 is enabled.
- c. When X2 is On, X0 is Off and X1 is Off, R608 is Off, R609 is Off and R610 is On. Set [Handwheel activate] of axis 3 to On. Then, the handwheel function of axis 3 is enabled.
- d. When X3 is On, set [Handwheel factor](W74) to 1, the speed of handwheel operation is double.
- e. When X4 is On, set [Handwheel factor](W74) to 10, the handwheel will operate 10 times more.
- f. When X5 is On, set [Handwheel factor](W74) to 100, the handwheel will operate 100 times more.

- Note
 - Only one axis can active handwheel function within the same time.

Chapter 6 Ladder Editor

This chapter details the instructions of Ladder Editor which is integrated into DOPSoft. Please refer to DOPSoft User Manual for the installation of DOPSoft, and the function of HMI editing.

6.1 Ladder Editor Software

1. Open Ladder Editor Software

DOPSoft	
File View Tool Options Help	
💽 🚰 🛤 🖓 🥲 🐰 🐘 🏨 🛤 🛤 📾 🕼	

2. Select HMC model:

Series			HMI List	
HMC series	Model Type	Resolutio	n Color	
	HMC08-N500S52	800 * 600	65536 Colors	
	HMC07-N500H52	800 * 600	65536 Colors	
			Project Setup	
	Project Name:		NewHMI	
Aux	Screen Name:		Screen_1	
	Screen No:		1	
and the second se	Printer:		🛓 NULL	•
6.4	System Message L	anguage:	Traditional Chinese	•
	HMI Rotation:		0 v degree	
	ъ.			

3. Open Ladder Editor

Click the icon of Edit Logic Data in the tool bar to enable Ladder Editor.

Or users can select Edit Logic Data from Tools to enable Ladder Editor.

Too	ols Options Window	Help
	Compile	Ctrl+F7
÷÷÷	Rebuild All	
-	Download All Data	Ctrl+F8
	Upload all Data	
Q	Download Screen	Ctrl+F9
	Upload recipe	
	Download Recipe	
	Download Logic Data	
	Upload Logic Data	
<u>i</u> .	On-line Simulation	Ctrl+F4
	Off Line Simulation	Ctrl+F5
ſ	Edit Logic Data	
	Update <u>F</u> irmware	
	Get Firmware Information	
	Reset HMI	

4. Ladder Editor is ready

📰 Ladder Editor - [Ladder Diagram -Prog1]			
🖳 File(F) Edit(E) Co	ompile(P) Communication Options(O) View(V) Window(W) Help(H)	_ 8 ×	
8 B B 4 E 9			
计控制性量分			
Task Torg0 Torg1 Timer Sub Program Motion Program (2)	(3)	ENI	
I	<	T T	
	(4) Output Find Result 1 Find Result 2 Monitoring Watch		
(5) Replace Ro	ow: 7, Col:3 2 / 30000 Steps IMC Series	.:1	

Mark	Item	Description
(1)	Tool Bar	Function of file, edit, compile, communication
(1)		setting and etc.
(2)	Program	It is the framework of Ladder that used by the
(2)	Tree Diagram	current project.
(2)	Program	It shows the current editing program content.
(3)	Editing Zone	
(4)	Application	It includes output window, find result and monitor
(4)	Zone	device window.
	Editing	It shows the current editing status and can be
(5)	Status	switched to Replace or Insert Mode.

6.2 New Ladder Program and Its Setting

6.2.1 Initial Task

It can only exist one initial task. Users are unable to change its name. The initial setting can be written into this task.

6.2.2 Cyclic Task

1. New Cyclic Task

Right click **Cyclic**. Then, select **New cyclic program**. A **New Program** window will pop up.

up.

Enter the program name, which is up to 16 characters. Then press OK.

2. Setup Cyclic Task

Right click Cyclic. Then, select Setting. The Time slot setting window will pop up.

According to the actual Task which shown in the window, enter the usage (%) of each task. The usage sum of all tasks has to be 100. Otherwise, a warning message of **Total usage of time slot must equal to 100** might pop up. Users could also use **Average to all** and **Average to unassigned** to do quick setting.

ime slot setting - Cy	vclic task
Task Name	Usage% (1-100)
Prog1 ABC	50 50
Free	0
Average to a	all Average to unasigned
	OK Cancel

3. Rename the program

Right click the program name and select **Rename**. A **New Program** window will pop up.

Change the program name and click OK.

New Program Program Name		Task
Program Type Cyclic	Cancel	→ 1.Flog1 2:DEF Timer Sub Program Motion Program

6.2.3 Timer Task

1. New Timer Task

Right click Timer and select New timer program. A New program window will pop up.

Enter the program name, which is up to 16 characters. Then, press OK.

Image: Concel Image: Concel Program Type Image: Concel Timer Image: Concel Image: Concel Image: Con	New Program		□···□ Task □··□ Initial □····□ Prog0
Timer	Program Type	Cancel	□ Cyclic □ 1:Prog1 □ 2:DEF □ - ► Timer
	Timer		Sub Program

2. Setup Timer Task

Each Timer Task has to be set individually. Right click the program name and select **Setting**. **Timer task setting** window will pop up.

Enter the time interval of the Timer Task. Its setting unit is ms and range is between 1 ms and 30000 ms.

Timer task setting	9	
Interval	100	ms 🔹
	OK (Cancel

3. Rename the program

Right click the program name and select Rename. A New program window will pop up.

Enter the program new and press OK.

New Program		e Task e D Initial
Program Name Timer_1 Program Type Timer	OK Cancel	Prog0 Cyclic Cyclic 2:DEF Sub Program Motion Program

6.2.4 Sub Program

1. New Sub Program

Right click the **Sub Program** and select **New Sub Program**. A **New program** window will pop up.

Enter the program name, which is up to 16 characters. Then, press OK.

New Program	□ Task □ □ Initial □ □ Prog0
Program Name OK Subi Program Type Sub Program	Cyclic 1:Prog1 2:DEF Timer 3:Timer - Timer_1 Sub Program Sub1 Motion Program

2. Rename the program

Right click the program name and select **Rename**. A **New program** window will pop up.

Enter the new program name and press OK. Meanwhile, if the Ladder program has called the command about this sub program, it will be renamed automatically.

		📮 🗠 📩 Task
New Program		🖨 🔲 Initial
New Program		💷 💷 ProgO
		🖨 🔲 Cyclic
Program Name	OK	💷 1:Prog1
Action1		亘 2:DEF
	Cancel	🖮 📄 Timer
Program Type		🚬 🍋 3:Timer - Timer_1
Sub Program 👻		🚊 💫 Sub Program
		🔁 Action1
) →	Motion Program

6.2.5 Motion Program

1. New Motion Program

Right click the **Motion Program** and select **New Motion Program**. A **New program** window will pop up.

Enter the program name, which is up to 16 characters. Then, press OK.

New Program		🖃 🔲 Task
		📄 🔲 Initial
Program Name	OK	💷 ProgO
Move		📄 📄 🔲 Cyclic
	Cancel	💷 💷 💷 💷
Program Type		🍋 Timer
Motion Program 👻		🛓 🛛 💽 Sub Program
[🖮 ව <u>Motion Prog</u> ram
		Move

2. Rename the program

Right click the program name and select **Rename**. A **New program** window will pop up.

Enter the new program name and press OK. Meanwhile, if the Ladder program has launched the command about this motion program, it will be renamed automatically.

New Program	🖃 🛅 Task
Program Name OK Cancel Program Type Motion Program	Initial Prog0 Cyclic I:Prog1 Timer Sub Program Motion Program

6.3 Other Functions

File Function

File	e(F)	Edit(E)	Compile(P)
	Sav	ve(S)	Ctrl+S
	Pri	nt	
	Pre	view	
	Pri	nt All	
	Pri	nter setup	
	Exp	port(E)	
	Im	port(I)	
	Exi	t(X)	Alt+X

Item	Description
Save (S)	Save the current Ladder program
Print	Print the current editing content of Ladder
	program
Preview	Preview the current editing content of Ladder
	program
Print ALL	Print all the content of unlocked Ladder
	program.
Printer	Setup the printing format, including paper size,
setup	border, direction and etc.
Export (E) Export Ladder program (.cwp)	
Import (I)	Import Ladder program (.cwp)
Exit (X)	Close Ladder Editor

Edit Function

Edit(E)	Compile(P)	Communication	Op
Sele	ct All	Ctrl+A	
Dele	ete	Del	
Cut		Ctrl+X	
Сор	У	Ctrl+C	
Past	e	Ctrl+V	
Find	(F)	Ctrl+F	
Rep	lace(H)	Ctrl+H	
Gol	Го(G)	Ctrl+G	
Go t	o the Start(T)	Ctrl+Home	
Go t	o the End(N)	Ctrl+End	
Dev	ice Comments	Ctrl+Alt+D	
Seg	ment Comments	s(B) Ctrl+Alt+B	
Row	Comment(L)	Ctrl+Alt+L	
Dev	ice Table(D)		
Sym	bol Table(B)		

Item	Description
Select All	Select all content of current
	Ladder program
Delete	Delete the selected content
Cut	Cut the selected content
Сору	Copy the selected content
Paste	Paste the selected content
Find (F)	Find the target from current or all
	program
Replace (H)	Find the target and specify the
	replaced device from current or
	all program
Go To (G)	Go to the specified STEP
Go to the Start (T)	Go to STEP 0 in editing program
Go to the End (N)	Go to END command in editing
	program
Device	Edit Device Comments
Comments	
Segment	Edit Segment Comments
Comments	
Row Comments	Edit Row Comments
Device Table (D)	Open the window of Device
	Table
Symbol Table (D)	Open the window of Symbol
	Table

• Find and Replace

Find and Replace
Find Replace Device
Find what:
(1) •
Replace with:
(2) •
Find options
Search up (3)
All Ladders
To result 1 window
To result 2 window (5)
Keep (Find what) device comment
Then remove replaced device comment
Replace options
Count 1 (7)
Replace All

Item	Description
(1)	Find the device
(2)	Replace the device
(3)	Find from the current program or all
	program
(4)	Select the output result to result 1
	window or result 2 window
(5)	Replace find device comment with
	replaced device comment
(6)	Replace find device comment with
	replaced device comment and remove
	find device comment
(7)	The replaced device number

• Device Comments / Segment Comments / Row Comments

• Select the Device first and click **Edit Device Comments** to open the editing window.

Device Comment			
Device M1 •	Edit Comment Condition1	OK	Cancel
			-

• Select the blank row and click **Edit Segment Comments** to open the editing window.

Edit Comment	Section 1		OK	Cancel	

•

Row	Comment	Outpu
0		V
1		
2	First output	
3	2nd output	
4	3rd output	

Click Edit Row Comments to open the Edit Row Comment window.

• Device Table

It shows the comment of all devices. Users can directly edit the table according to the selected device.

1.5								
	Goto De	vice No:			Goto			
	x	Y N	T	с	D	R	w	
	Used	Device	Comment					
		M0						
		M1	Condition1					
		M2						
		M3						
		M4						

• Symbol Table

(3) (4) (1)(2) Device Name Used No. Repeated Symbol Device Comment Symbol Repeated 0 Speed D200 Υ1 1 1 External OUT A Symbol Repeated Speed D100 2 1 3 4

Item	Description					
(1)	If the device is checked, it means it is being used in the program.					
(2)	Symbol Repeated \rightarrow Different devices use the same symbol.					
	Device Repeated \rightarrow One device use more than two symbols.					
(3)	Symbol is used by the device.					
	It will replace the device in the program.					
	MOV K123 Speed					
(4)	Select the device which uses symbol.					

Compile Function

Compile(P)	Communication	Options(O)	
Compile	(A)	Ctrl+F7	
Ladder =	Ladder = > Instruction(I)		
Instructio	on => Ladder (L)	Ctrl+F10	

Item	Description
Compile all	Compile all program
Ladder →	Convert ladder diagram to instruction
Instruction	
Instruction	Convert instruction to ladder diagram
\rightarrow Ladder	

Communication Setting Function

Communication		Options(O)	Vie
ie.	Online Monitoring		
<u>5</u> 7	Connection Setting		
Reset to default memory			

Item	Description
Online	Monitor the execution of HMC ladder
Monitoring	program through Ethernet
Connection	Connection setting of HMC's Ethernet
Setting	
Reset to	Reset the value to the default one
default	
memory	

• Online Monitoring

Connect to HMC according to the connection setting. Before executing online monitoring, HMC program has to be compiled first and check if the HMC internal program is the same as editing ladder. Warning message will pop up if it is different.

When the connection is successfully built, users can monitor the execution of current ladder.

M100	(SERVO ON), M101(SERVO OFF)		
R0On		CALL	SERVO
M20bff		RST	Off M202
	15.46	RST	M203
系統; R1086ff	戊愿 Rloggff Rloggff Rloggff Rloggff Rloggff M20bff		Off

Connection Setting

Click **Option** \rightarrow **Communication Setting** to open the window from DOPSoft. Then, setup IP address as the followings and check **Enable Network Application** to download the screen to HMC.

	Commu	nication Setting	
Device	LocalHost SMTP		
COM1	Nost V Overwrite IP Obtain an IP address auton HMI HMI IP Address Subnet Mask Gateway IP upload/download port Modbus TCP Server Port vork (eRemote Server Ladder Monitoring V Enable Password ScanTime	natically HMC 192.168.1.10 255.255.00 0.0.0.0.0 12346 502 12345678 100 (ms)	
Comm. Interrupt 3	Port Show warning in disconnee Close warning window times then ignore	12348	•

IP setting of PC should be set in the same domain as HMC

Internet Protocol Version 4 (TCP/IPv4) Properties				
General				
You can get IP settings assigned au this capability. Otherwise, you nee for the appropriate IP settings.	utomatically if your network supports d to ask your network administrator			
Obtain an IP address automat	tically			
• Use the following IP address:				
IP address:	192.168.1.20			
Subnet mask:	255 . 255 . 255 . 0			
Default gateway:				
Obtain DNS server address au	utomatically			
• Use the following DNS server	addresses:			
Preferred DNS server:				
Alternate DNS server:	· · ·			
Validate settings upon exit	Ad <u>v</u> anced			
L	OK Cancel			
Setup HMC IP and use Port and password

🛃 Connection Setting	×
Connect to	
IP 192 168 1 10	Port : 12348
Password 12345678	Auto connect
ОК	Cancel
Status	

Reset Value of Device Memory
 Reset the device back to the default value through Ethernet

🛛 Connection Sett	ing		x
Connect to			
IP 192 . 168 .	1.	Port 10 : 12348	
Password 12345678		📝 Auto connect	
[OK	Cancel	
Status			

Project Function

Item	Description
Title	Setup the project version
Setting	Setup parameters of the project
Lock the	After verifying the password, lock the
Ladder	specified ladder. The locked program
	cannot be opened or changed.
Change the	Change the password
Password	
Group servo	Servo architecture in use setting
setting	
DAI/DAO	Set the parameters of DMCNet analog
parameter	input (DAI) and DMCNet analog output
	(DAO)

Title

Enter the project tile, file version and file description

💀 Create New Project	×
Title HMC	Device Type HMC Series
File Version	Model Type: 0xDC106150 Max Steps: 30000
File Description General	
	OK Cancel

Setting

Setup the maximum switch time (Unit is us) in timer task and automatically save the cycle of ladder program.

🖳 Project Setting	
Timer Task Max switch time(The 100 💌 us	e base unit is 50 us)
Other 📝 Auto Save	Interval ⁵ 💮 Minutes
	OK Cancel

Lock Ladder program
 Password authentication first

🖳 Lock ladder program	
Password	OK
Default password: 12345678	Cancel

Select the ladder program that lock and check. And that program will be unable to open or edit.

Group servo setting

The setting of servo architecture in use implements the multiple-axis motion between different servo drives.

🚽 Group Servo settir	ng				
DMCNet station list Station1 M	Station2 5	Station3	Station4	Station5	Station6
Station7	Station8 5	Station9	Station10	Station11	Station12
				OF	Cancel

DAI/DAO parameter setting

The DAI/DAO setting window can be used to set DMCNet analog input (DAI) and DMCNet analog output (DAO) modules. Users can set the parameters according to different DMCNet station ID.

The analog input module enables the user to set the voltage input range and the input sampling mode (average number of the input values) for CH0~CH3.

The analog output module enables the user to configure the following settings for CH0 \sim CH3: output enable, output retain when disconnected, output excess limit (voltage), the voltage output range, output offset and AD conversion time.

🖳 DAI / DAO Setting			
Station 1			
📄 CH0 Output enable	CHO Output range	0~+5¥ 🗸 🗸	
🔄 CH1 Output enable	CH1 Output range	0~+5\ 🗸 🗸]
🔲 CH2 Output enable	CH2 Output range	0~+5∀ ▼	
🔲 CH3 Output enable	CH3 Output range	0~+5∀ ▼	
📃 CH0 Output retain	CH0 Output offset	0	
🥅 CH1 Output retain	CH1 Output offset	0	
🔲 CH2 Output retain	CH2 Output offset	0	
🦳 CH3 Output retain	CH3 Output offset	0	
CH0 Output excess limit	CHO Input range	-10V~+10V 🗸	1
CH1 Output excess limit	CH1 Input range	-10V~+10V 🗸	1
CH2 Output excess limit	CH2 Input range	-10V~+10V 🗸	1
	CH3 Input range	-10V~+10V 🗸	1
	CH0 AD convertion time	17 us 👻]
	CH1 AD convertion time	17 us 👻]
	CH2 AD convertion time	17 us 👻	1
	CH3 AD convertion time	17 us 👻]
	CHO Input sampling mode	0 🗸	2^n
	CH1 Input sampling mode	0 -	2^n
	CH2 Input sampling mode	0 -	2^n
	CH3 Input sampling mode	0 -	2^n

Option Function

Ор	tions(O)	View(V)	-	5	×	
~	Prompt	to Edit Devid	e Con	nme	nt(H	I)

Item	Description
Prompt to Edit	After entering the command,
Device	automatically check if the device
Comment	comment does exist. If not, it will
	automatically activate the window
	for entering the device comment.

View Function

Vie	w(V)	Window(W)	Hel	p(ł	H)
	Zoor	m(Z)	•		Zoom In
~	Outp	Output Window			Zoom Out
	Wate	ch Window			50%
	Shov	v LD(L)	•	~	70%
	Shov	v IL(I)			100%
~	Shov	v Comment			125%
~	Shov	v Symbol			150%

Item	Description
Zoom	The window can be zoomed in or
	zoomed out to 50%, 70%, 100%,
	125% and 150%.
Output Window	It shows the output window.
Watch Window	It shows the watch window.
Show LD	It shows the ladder program.
Show IL	It shows the instruction.
Show Comment	Show the device comments and
	row comments or not?
Show Symbol	Show the symbol or device or not?

Window Function

W

indow(W) Help(H)	Item	Description
Cascade(C)	Cascade	More than one ladder diagrams are in
Title Horizontally(H)		cascade display
Title Vertically(V)	Title Horizontally	More than one ladder diagrams are in title
nue venteany(v)		horizontally.
	Title Vertically	More than one ladder diagrams are in title
		vertically.

Review HMC Command History

選	選項(O)								
! 🛅	7	i i i							
	1.1.1								

Item	Description
Review HMC	Acquire HMC's record:
command	1. The latest 50 motion commands issued
history	by servo drive.
	2. The latest 50 motion statuses

• LogViewForm

Left click the button of [Review HMC Command History] to open the window of [LogViewForm].

Click [Read from file] to import the record (.dep or .des) so as to read the detailed information. Users also can acquire HMC's file through [Access the HMI's latest 50 commands] when the communication is built.

き	資料	檔 (*.dep) 或	命令言	己錄檔 (*.d	es)		從檔案證	入			讀取人機前50)筆台
號1	軸	站號2 軸対	號3	軸站號4	軸站號5 軋	•站號6 •	站號7 軸	站號8 軸	站號9	軸站號10	軸站號11 軸边	-號1
目傳	的歴	史記錄 (503		最後1	ENo: 7	Go	to					
	No	Time Stamp	PI St	DO atus	PDO RunSt	警報 代碼	回授位置	回授述	速度	HMC Trigger	HMC Status	
	7	830987853	0x	0627	0x000D	0000 0)	0		0x0010	0x000E	
8	3	830834559	0x	0227	0x008D	0000 1	00000	0		0x0010	0x000C	
9	Э	830834569	0x	0627	0x008D	0000 1	00000	0		0x0010	0x000E	
1	10	830838579	0x	0627	0x008D	0000 1	00000	0		0x0010	0x000E	
1	11	830838649	0x	0627	0x008D	0000 1	00000	0		0x0010	0x000E	_
_						III						F.
送出	HADE	歷史記錄 (50	御り		20	Go	to 另	存des檔]			
	No	Time Stamp	Task ID	PDO Status	PR Index	PR Cmd	PR Data	警報 代碼	回授位置	回授速度	PLC Code Index	
	13	830838650	0	0x0627	0	0x000x0	0	0	100000	0		
1	1.4	830944581	0	0x0627	0	0x0000	0	0	100000	0		
1	14	830944631	0	0x0627	0	0x0000	0	0	100000	0		
1	15		0	0x0627	0	0x0000	0	0	100000	0		
1	15 16	830944761		0.0627	0	0x0000	0	0	100000	0		
	14 15 16 17	830944761 830944811	0	0X0027	-				100000	0	0.0000000	
	15 16 17 18	830944761 830944811 830950510	0	0x0627	2	0x17702	0	0	100000	0	0x00000929	- 11
	15 16 17 18 19	830944761 830944811 830950510 830950560	0 1 0	0x0627 0x0627	2	0x17702 0x0000	0	0	100000	0	0x0000929	

The record includes the information of 12 axes. User can select the axis from [Axis number] and double click the column for further information.

	Detail		x	軸站號	1 庫	站號2 軸站	號3	鼬站號4	軸站號5	軸站號6 軋
l r	PDO Status	Value		伺服回位	期的限	医中記錄 (503	筆)	最後	1 筆No: 7	Go
	伺服就緒(RS)	1								
	伺服ON(SO)	1			No	Time	PI	0	PDO	警報
	伺服錯誤(FT)	0			NO	Stamp	St	atus	RunSt	代碼
	伺服急停(QS)	1					_	_		
	伺服警告(WR)	0	=		7	830987853	0x0)627	0x000D	0000
	速端(RM)	1			8	830834559	0x0	0227	0x008D	0000
	命令到達(TG)	1			9	830834569	0x0	0627	0x008D	0000
	特定模式(OM)	1			10	830838579	0x0)627	0x008D	0000
					11	830838649	0x0	0627	0x008D	0000
					12	830838699	0x0	0627	0x008D	0000
			-	НМС送	出的	, 歴史記錄 (50	筆)	最後	1筆No: 20	Go
			Close		No	Time Stamp	Task ID	PDO Status	PR Index	PR Cmd
<u> </u>					4.0	000000000	0	la acon	0	0.0000

Help Function

Help(H)	Item	Description
About(A)	About (A)	Version of Ladder Editor

(This page is intentionally left blank.)

Chapter 7 Appendix

7.1 Extension Pin (including the installation of handwheel)

Pin Definition (See diagram on the right)	Description	
1	24V A (FOR PHASE A, B)	
2	PHASE A (Handwheel PHASE A)	3 4 8
3	PHASE B (Handwheel PHASE B)	7 <mark>-6-</mark> 24
4	GND A (For PHASE A, B)	9-10-2-1
5	GND B (For INTERRUPT 0 ~ 3	Human Machine Interface
6	INTERRUPT 0	INPUT: DC + 24V Class 2 / 400mA
7	INTERRUPT 1	DELTA ELECTRONICS, INC. MADE IN TAIWAN
8	INTERRUPT 2	MCNET
9	INTERRUPT 3	
10	24V B (FOR INTERRUPT 0~3)	
Note: Handwheel only no	eeds to connect to 1~4 pins.	

7.2 Definition of Bus Pin

Lines	Name	Description	12 pin	16 pin	32 pin
White & Orange	URG_C	Emergency switch B contact	*	*	*
White & Orange	URG_C	Emergency switch B contact	*	*	*
White & Green	URG_O	Emergency switch A contact	*	*	*
White & Green	URG_O	Emergency switch A contact	*	*	*
Red	Power	Power supply 24V+	*	*	*
Black	PGND	Power ground	*	*	*
White	EGND	Ground	*	*	*
Yellow	422_TX+	RS422: TX+, RS232: TX, RS485:			*
		T+/R+			
White & Yellow	422_TX-	RS422: TX-, RS485: T-/R-			*
Black & White	CGND	Signal ground	*	*	*
Black & White	CGND	Signal ground			*
Black & White	CGND	Signal ground			*
White & Blue	LIM_O	Limit switch A contact			*
White & Blue	LIM_O	Limit switch A contact			*
Purple	422_RX+	RS422: R+, RS232:RX			*
White & Purple	422_RX-	RS422: R-			*
Black & Orange	INT1	Interrupt 1 (Reserved)			*
Black & Green	INT0	Interrupt 0 (Reserved)			*
Red & Black	I_GND	Interrupt ground			*
White & Red	I_PW	Interrupt power supply 24V+			*
RJ45 Blue	DMC	DMCNET wiring	*	*	*
RJ45 Black	ETH	EtherNet wiring			*
RJ45 Green	RIO	Remote IO wiring		*	*

7.3 Setting and Framework of ASDA-M 4-axis Synchronous Servo Drive

Framework of special 4-axis synchronous control:

7.4 Function of Capturing Device Table

Capture [Device Table] function from DOPSoft enables users to capture HMC partial devices' current status (\$M, D, W, M, R) and the records of HMC command history (!SYS). Users can copy status and records and do remote debug.

Select [Option] → [DeviceTable] to open the window of Device Data in DOPSoft.

Functions in Device Data include:

a. Display in [WORD]:

Each data is made up of Word.

- b. Display in [DWORD]:
 Each data is made up of DWord
- c. Display in [Decimal]:

The display format of each data is Signed Decimal.

d. Display in [Hexadecimal]:

The display format of each data is Hexadecimal.

e. [Upload from HMI]:

When the communication between PC and HMC is successfully built, users can capture HMC's data to PC via USB or EtherNet.

- f. [Download to HMI]: Write the device data into HMC.
- g. [Import]:

View the external data via [Import] function.

h. [Export]:

Save the device data table as .dep file. Users can open the file via [View HMC command history] and view the system's status (!SYS).

i. Download all data including Device Table:

When [Including device table] is checked, the device data table including in project file will be downloaded to HMC.

E Device	Data					-	- 1.1					
Displa	ay option Display format Action When download all data					/hen download all data						
a. o v	/ORD	c. 💿	Decimal		e. Upla	oad from H	ни	g. Imj	port	i.	🗏 Include device table	
<mark>b.</mark> © D	WORD	d. _C	Heximal		f. Dow	rnload to l	нмі	h. Export				
SM	!D	!W !	M !R	l !S	YS							
	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9		^
\$M0	1	1	0	0	10000	0	0	27	0	0		
\$M10	0	2	2	0	0	0	0	0	0	0		E
\$M20	0	0	0	0	0	0	0	0	0	0		
\$M30	0	0	0	0	0	0	0	0	0	0		
\$M40	0	0	0	0	0	0	0	0	0	0		
\$M50	20	0	0	0	0	0	0	0	0	0		
\$M60	0	0	0	0	0	0	0	0	0	0		
\$M70	0	0	0	0	0	0	0	0	0	0		
\$M80	0	0	0	0	0	0	0	0	0	0		
\$M90	0	0	0	0	0	0	0	0	0	0		
\$M100	0	0	0	0	0	0	0	0	0	0		
\$M110	0	0	0	0	0	0	0	0	0	0		
\$M120	0	0	0	0	0	0	0	0	0	0		
\$M130	0	0	0	0	0	0	0	0	0	0		
\$M140	0	0	0	0	0	0	0	0	0	0		
\$M150	0	0	0	0	0	0	0	0	0	0		
\$M160	0	0	0	0	0	0	0	0	0	0		
\$M170	0	0	0	0	0	0	0	0	0	0		
\$M180	0	0	0	0	0	0	0	0	0	0		-

HMC command history (!SYS) will automatically update to the latest status in following three situations:

a. AL.918 occurs:

This alarm occurs when servo drive is over speed. When the drive speed exceeds the range of [P1-55, Maximum Speed Limit], the drive will automatically servo off and DO.BRKR will be on. Once AL.918 occurs, HMC will record the current command history in data retained device !SYS for reference.

b. AL.030 occurs:

This is for protecting servo drive from crash. When the condition of protection function is fulfilled, the drive will automatically servo off and DO.BRKR will be on. Once AL.030 occurs, HMC will record the current command history in data retained device !SYS for reference.

c. Set the flag of [Save the record in latch area](R500) to ON:

When this flag is on, HMC will record the current command history in data retained device !SYS.

(This page is intentionally left blank.)

Chapter 8 Application Notes

8.1 Use Rising-Edge of Flag to Initialize the Procedure

- a. Wrong programming:
- 1. M102 is set as the triggering button on HMI. When it is on, it means the system should start homing.
- 2. The rising-edge of M102 initializes homing.
- 3. M102 is on and go into sub-program, [HP], to do homing (When homing is complete, M102 is set to off.

b. Causes:

HMI side is always communicating with the controller. If the timing that HMI side triggers M102 to on as the figure that shows below, homing will start before initialing. See followings for the time sequence:

- 1. Rising-edge of M102 is not detected. Thus, it does not initialize homing (M102 is still off).
- 2. M102 is set to on (see the following diagram for its triggering timing)
- 3. M102 is on. Go to [HP] and start homing. However, it might cause error since it has not been initialized.
- 4. In next scanning, rising-edge of M102 is detected, but the system has done homing before doing initialization. Sequence error.

c. Suggestions:

For instance, set M4070 to on after the initialization is complete so as to ensure the user initializes homing before executing.

- 1. The rising-edge of M102 initializes homing.
- 2. M102 is on. The initialized setting should be complete (M4070 is on) before going to the sub-program, [HP] to do homing.
- 3. When homing is complete or homing will not be executed (M102 is off), the flag should be off (RST M4070.)

(This page is intentionally left blank.)