$0 \rightarrow$? 2

ABU Headquarters
Delta Electronics, Inc.
Taoyuan Technology Center
No. 18, Xinglong Rd., Taoyuan City
aoyuan County 33068 , Taiwan
TEL: 886-3-362-6301 /FAX: 886-3-371-6301
Asia
Delta Electronics (Jiangsu) Ltd.
Wujiang Plant 3
688 Jiangxing East Road
Wujiang Economic Development Zon
Wujiang City, Jiang Su Province,
eople's Republic of China (Post code: 215200)
TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290
Delta Greentech (China) Co., Ltd
38 Min-Xia Road, Pudong Distric
hangHai, P.R.C.
ost code: 201209
TEL: 86-21-58635678 / FAX: 86-21-58630003
elta Electronics (Japan), Inc.
Tokyo Office
-1-14 Minato-ku Shibadaimon
ELyo 105-0012, Japan
Delta Electronics (Korea), In
511 , Byucksan Digital Valley 6-cha, Gasan-dong,
Geumcheon-gu, Seoul, Korea, 153-704
Delta Electronics Int' (S) Pte Ltd
4 Kaki Bukit Ave 1, \#05-05, Singapore 417939
EL: 65-6747-5155/FAX: 65-6744-9228
Delta Electronics (India) Pvt. Ltd.
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
Americas
Delta Products Corporation (USA)
Raleigh Office
esearch Tria, 5101 Davis Drive
EL: 1-919-767-3800 / FAX: 1-919-767-808
elta Greentech (Brasil) S.A
Sao Paulo Office
Rua Itapeva, $26-3^{\circ}$ andar Edificio Itapeva One-Bela Vis
Rua Itapeva, $26-3^{\circ}$ andar Edificio
$1332-000-$ São Paulo-SP-Brazil
TEL: $+55113568-3855$ /FAX: +5511 3568-386

Europe

eltronics (The Netherlands) B.V.
e Witbogt 15,5652 AG Eindhoven, The Netherlands
EL: 31-40-2592850 / FAX: 31-40-2592851
DVP-2959920-01

We reserve the right to change the information in this catalogue without prior notice.

DVP-PLC Application

Examples of Programming

Foreword

Industrial Automation Business Unit (IABU) of Delta Electronics focuses our expertise on "Drive, Motion and Control" with our knowledge and experience in automation control. Our R\&D teams continue researching and developing key technologies, producing innovative products in industrial automation; for example many OEM's use our automation products for processing machines used in the food industry, textile industry, chemical industry, electronics industry, metal industry and plastic industry. Our automation equipment is also used in the pharmaceutical industry, printing industry, as well as for energy saving air-conditioning and water treatment facilities. In recent years, we have integrated our industrial automation products, developed industrial control networks, and offered integration services to our clients around the world.

Delta's DVP series high-speed, stable and highly reliable PLCs are applied in various automation machines. In addition to its fast logic operations, abundant instructions, various extension cards and cost-effectiveness, DVP series PLCs support many communication protocols, seamlessly integrating the industrial automation control system as a whole.

To meet users' needs for DVP-PLC programming examples, we provide examples of basic instructions including sequential/position control, timed counting and input/output control in DVP-PLC Application Examples. In addition, in this manual we also provides examples of advanced instructions including elementary arithmetic operations, data processing, high speed input/output control, network connection, and PLC communication(AC motor drive / temperature controller / servo motor). DVP-PLC Application Examples includes most common applications in automation control, such as parking lot entry/exit control, material mixing, stock monitoring, level monitoring, traffic lights control, and conveyer belt control. This manual explains methods for applying basic instructions as well as advanced instructions of DVP-PLC to accomplish the field application purposes. Users can easily understand how DVP-PLC features in automation applications through this manual. By referring to our DVP-PLC Application Manual-【Programming】, users can also apply DVP-PLC efficiently on particular purposes and fulfill various control requirements in industrial automation.

DVP-PLC Application Examples

CONTENTS

1. Basic Program Design Examples
1.1 Normally Closed Contact in Series Connection 1-1
1.2 Block in Parallel Connection 1-2
1.3 Rising-edge Pulse Output for One Scan Cycle 1-3
1.4 Falling-edge Pulse Output for One Scan Cycle 1-4
1.5 Latching Control Circuit. 1-5
1.6 Interlock Control Circuit 1-6
1.7 Automatic Parameter Initialization When Powered Up 1-7
1.8 Common Latched Circuit and SET/RST Instructions Application 1-8
1.9 SET/RST - Latched and Unlatched Circuit 1-9
1.10 Alternate Output Circuit (With Latched Function) 1-10
1.11 Conditional Control Circuit 1-12
1.12 First-in Priority Circuit 1-13
1.13 Last-in Priority Circuit 1-15
1.14 Entry/Exit Control of the Underground Car Park 1-16
1.15 Forward/Reverse Control for the Three-Phase Asynchronous Motor 1-18
1.16 Selective Execution of Programs 1-19
1.17 MC/MCR - Manual/Auto Control 1-21
1.18 STL Manual/Auto Control 1-24
2. Counter Design Examples
2.1 Product Mass Packaging 2-1
2.2 Daily Production Record (16-bit Counting Up Latched Counter) 2-2
2.3 Products Amount Calculation (32-bit Counting Up/Down Counter) 2-4
2.4 24-hour Clock Operated by 3 Counters 2-5
2.5 A B-phase Pulse High-speed Counter 2-6
3. Timer Design Examples
3.1 Delay OFF Program 3-1
3.2 Delay ON Program 3-2
3.3 Delay ON/OFF Program 3-3
3.4 Sequential Delay Output (Starting 3 Motors Sequentially) 3-4
3.5 Pulse-Width Modulation 3-6
3.6 Artificial Fishpond Water Level Monitoring System (Flashing Circuit) 3-7
3.7 Burn-in Test System (Timing Extension) 3-9
3.8 Star-Delta Reduced Voltage Starter Control 3-11
3.9 Automatic Door Control 3-13
3.10 Automatic Liquids Mixing Control System 3-15
3.11 Automatic Coffee Maker 3-17
3.12 Automatic Urinal Flushing Control Program 3-19
3.13 Performing Accumulative Function with Normal Timer 3-21
3.14 Performing Teaching Function with Normal Timer 3-23
3.15 Auto Interruption Timer 3-25
3.16 Interesting Fountain 3-27
3.17 Traffic Lights Control 3-29
4. Index Registers E, F Design Examples
4.1 Summation of Continuous D Registers 4-1
4.2 Parameter Setting for Product Recipe 4-3
4.3 Controlling Voltage Output of 2 DVP-04DA by 8 VRs (Variable Resistors). 4-5
5. Loop Instruction Design Examples
5.1 Recipe Setting by CJ Instruction 5-1
5.2 Reservoir Level Control 5-3
5.3 Fire Alarm in the Office (Interruption Application) 5-5
5.4 Auto Lock up System in the Supermarket (FOR ~ NEXT) 5-7
6. Data Transmission and Comparison Design Examples
6.1 CMP - Material Mixing Machine 6-1
6.2 ZCP - Water Level Alarm Control 6-3
6.3 BMOV - Multiple History Data Backup 6-4
6.4 FMOV - Single Data Broadcasting 6-5
6.5 CML - Color Lights Flashing 6-7
6.6 XCH - Exchanging the Upper and Lower 8 bits in a Register 6-8
6.7 DIP Switch Input and 7-segment Display Output 6-9
7. Elementary Arithmetic Operations Design Examples
7.1 Accurate Pipe Flow Measurement 7-1
7.2 INC/DEC - Fine Tuning by JOG Control 7-3
7.3 NEG - Displacement Reverse Control 7-5
8. Rotation and Shift Design Examples
8.1 ROL/ROR - Neon Lamp Design 8-1
8.2 SFTL - Defective Product Detect 8-3
8.3 WSFL - Automatic Sorting Mixed Products 8-5
8.4 SFWR/SFRD - Room Service Call Control 8-8
9. Data Processing Design Examples
9.1 ENCO/DECO - Encoding and Decoding 9-1
9.2 SUM/BON - Checking and Counting the Number of "1" 9-3
9.3 MEAN/SQR - Mean Value and Square Root 9-4
9.4 MEMR/MEMW - File Register Access 9-5
9.5 ANS/ANR - Level Monitoring Alarm System 9-7
9.6 SORT - Sorting Acquired Data 9-8
9.7 SER - Room Temperature Monitoring 9-10
10. High-speed Input/Output Design Examples
10.1 REF/REFF - DI/DO Refreshment and DI Filter Time Setting 10-1
10.2 DHSCS - Cutting Machine Control 10-3
10.3 DHSZ/DHSCR - Multi-segment Coater Control 10-4
10.4 SPD - Wheel Rotation Speed Measurement 10-6
10.5 PLSY - Production Line Control Program 10-7
10.6 PWM - Sprayer Valve Control Program 10-9
10.7 PLSR - Servo Motor Acceleration/Deceleration Control 10-11
11. Floating Point Operation Design Examples
11.1 Elementary Arithmetic for Integer and Floating Point 11-1
11.2 Elementary Arithmetic for Floating Point 11-4
12. Communication Design Examples
Introduction 12-1
12.1 Communication between PLC and Delta VFD-M Series AC Motor Drive 12-5
12.2 Communication between PLC and Delta VFD-B Series AC Motor Drive 12-8
12.3 Communication between PLC and Delta VFD-V Series AC Motor Drive 12-11
12.4 Communication between PLC and Delta ASD-A Series AC Servo Drive 12-14
12.5 Communication between PLC and Delta ASD-A Series AC Servo Drive 12-18
12.6 Communication between PLC and Delta DTA Temperature Controller 12-22
12.7 Communication between PLC and Delta DTB Temperature Controller 12-25
12.8 PLC LINK 16 Slaves and Read/Write 16 Data (Word) 12-28
12.9 PLC LINK 32 Slaves and Read/Write 100 Data (Word) 12-31
12.10 LINK between PLC, Delta AC Motor Drive and AC Servo Drive 12-34
12.11 LINK between PLC, Delta DTA and DTB Temperature Controllers 12-38
12.12 Controlling START/STOP of 2 DVP PLCs through Communication 12-41
12.13 Communication between Delta PLC and Siemens MM420 Frequency Inverter 12-45
12.14 Communication between Delta PLC and Danfoss VLT6000 Series Adjustable Frequency Drive 12-50
13. Real Time Calendar Time Design Examples
13.1 TRD/TWR/TCMP - Office Bell Timing Control 13-1
13.2 TRD/TZCP - Control of Warehouse Automatic Door 13-3
13.3 HOUR - Control of Switching Motors after a Long Time Running 13-6
14. Simple Positioning Design Examples
14.1 Simple positioning Demonstration System of Delta ASDA AC Servo Drive14-1
14.2 Draw DELTA LOGO by 2-axis Synchronous Motion 14-6
15. Handy Instruction Design Examples
15.1 ALT - Auto Blackboard Cleaner 15-1
15.2 RAMP - Ramp Control of Crane 15-3
15.3 INCD - Traffic Lights Control (Incremental Drum Sequencer) 15-6
15.4 ABSD - Adding Materials in Different Intervals (Absolute Drum Sequencer)15-915.5 IST - Electroplating Process Auto Control15-12
15.6 FTC - Fuzzy Temperature Control of the Oven 15-18
15.7 PID - Oven Temperature Control (Auto-tuning for PID Temperature Control) 15-22
16. Network Connection Design Examples
16.1 Ethernet Connection 16-1
16.2 DeviceNet Connection 16-6
16.3 CANopen Connection 16-9
16.4 RTU-485 Connection 16-12
17. Index 17-1

1. Basic Program Design Examples

1.1 Normally Closed Contact in Series Connection

Control Purpose:

- Detecting the standing bottles on the conveyor and pushing the fallen bottles out Devices:

Device	Function
X 0	$\mathrm{X} 0=\mathrm{ON}$ when the detected input signal from the bottle-bottom is sheltered.
X 1	$\mathrm{X} 1=\mathrm{ON}$ when the detected input signal from the bottle-neck is sheltered.
Y 0	Pneumatic pushing pole

Control Program:

Program Description:

- If the bottle on the conveyor belt is upstanding, the input signal from monitoring photocell at both bottle-bottom and bottle-neck will be detected. In this case, $\mathrm{X0}=\mathrm{ON}$, and $\mathrm{X} 1=\mathrm{ON}$. The normally open (NO) contact X0 will be activated as well as the normally closed (NC) contact X1. Y0 remains OFF and pneumatic pushing pole will not perform any action.
- If the bottle from the conveyor belt is down, only the input signal from monitoring photocell at the bottle-bottom will be detected. In this case, $\mathrm{X} 0=\mathrm{ON}, \mathrm{X} 1=\mathrm{OFF}$. The state of output YO will be ON because the NO contact X0 activates and the NC contact X1 remains OFF. The pneumatic pushing pole will push the fallen bottle out of the conveyor belt.

1. Basic Program Design Examples

1.2 Block in Parallel Connection

Control Purpose:

- Setting up a lighting system for users to switch on/off the light whether they are at the bottom or the top of the stairs.

Devices:

Device	Function
X0	X0 turns ON when the bottom switch is turned to the right
X1	X1 turns ON when the top switch is turned to the right.
Y1	Stair light

Control Program:

Program Description:

- If the states of the bottom switch and the top switch are the same, both ON or OFF, the light will be ON. If different, one is ON and the other is OFF, the light will be OFF.
- When the light is OFF, users can turn on the light by changing the state of either top switch at the bottom switch of the stairs. Likewise, when the light is ON, users can turn off the light by changing the state of one of the two switches..

1. Basic Program Design Examples

1.3 Rising-edge Pulse Output for One Scan Cycle

Control Purpose:

- Creating a pulse of one program scan cycle as the condition to trigger the indicator or other devices when the switch (X0) is turned on.

Devices:

Device	
X0	Sunction
M10	Creating a trigger pulse for one program scan cycle
Y0	Indicator

Control Program:

Program Description:

- When X0 is turned on (Rising-edge triggered), PLS instruction will be executed, and M10 will send a pulse for one program scan cycle.
- When M10 $=0 \mathrm{ON}$, [SET Y0] instruction will be executed and Y 0 will be ON . In this case, the indicator will be lighted, and other devices will be activated as well.

1. Basic Program Design Examples

1.4 Falling-edge Pulse Output for One Scan Cycle

Control Purpose:

- Creating a pulse of one program scan cycle as the condition to trigger the electromagnetic valve or other devices when the switch is turned off.

Devices:

Device	
X0	Suitch(ON \rightarrow OFF)
M10	Creating a trigger pulse for one program scan cycle
Y0	Electromagnetic valve

Control Program:

Program Description:

- When X0 is turned on (Falling-edge triggered), PLF instruction will be executed, and M10 will send a pulse for one program scan cycle.
- When M10 $=$ ON, [RST Y0] instruction will be executed and Y0 will be OFF. In this case, the electromagnetic valve will be shut down.

1.5 Latching Control Circuit

Control Purpose:

- Controlling the running state of the ceiling-fan by pressing START and STOP.
- Checking if the ceiling-fan is running normally by pressing TEST.

Devices:

Device	
X0	Press START, X0 = ON.
X1	Press STO, X1 = ON.
X2	Press TEST, X2 = ON.
X3	Error signal
Y1	Ceiling-fan motor control signal

Control Program:

Program Description:

- Press START lightly and $\mathrm{XO}=\mathrm{ON}$. The ceiling-fan will keep running if no error occurred (X3 $=O F F)$. The action can be practiced by a latching circuit which takes output Y 1 as one of the input condition to keep the fan running even if the START button is not pressed.
- When STOP is pressed, $\mathrm{X} 1=\mathrm{ON}$ and $\mathrm{Y} 1=\mathrm{OFF}$. The ceiling-fan will stop running.
- If error occur $(X 3=O N), Y 1$ will be OFF and the ceiling-fan will stop running.
- When TEST is pressed $(\mathrm{X} 2=\mathrm{ON}), \mathrm{Y} 1=\mathrm{ON}$. The ceiling-fan will start running if no error occurred ($\mathrm{X} 3=\mathrm{OFF}$). On the contrary, when TEST is released, the ceiling-fan will stop running. The testing function is performed by this process.

1. Basic Program Design Examples

1.6 Interlock Control Circuit

Control Purpose:

- The Entry/Exit of the parking lot is a single lane passage. By controlling the indicators, the program ensures that only one car can pass through the Entry/Exit so as to prevent car accident between entering and leaving cars

Devices:

Device	Function
X0	Car entering sensor. When a car passes through the sensor, X0 = ON.
X1	Car leaving sensor. When a car passes through the sensor, X1 = ON.
Y0	Entering car indicator (ON means "GO", OFF means "STOP")
Y1	Leaving car indicator (ON means "GO", OFF means "STOP")

Control Program

Program Description:

- In the parking lot, there are two indicators individually directing the entering and leaving cars. By the interlock control circuit, only one indicator will show "GO" signal and the car accident will thus be prevented.
- When an entering car draws near the vehicle control barrier, X 0 will be ON and so will Y 0 . The entering car indicator will show "GO". At the same time, the leaving car indicator will show "STOP." Car entering is allowed but leaving is prohibited in this case.
- When a leaving car draws near the vehicle control barrier, X1 will be ON and so will Y1. The leaving car indicator will show "GO" and the entering car indicator will show "STOP."

1. Basic Program Design Examples

1.7 Automatic Parameter Initialization When Powered Up

Control Purpose:

- When the machine is powered up, all the parameters will be initialized automatically and the machine will be ready. Users don't need to set the parameters manually.
- Users can initialize parameters by pressing Initialization button at any time when the machine is running.

Devices:

Device	Function
X1	Initialization button. X1 will be ON when pressed
M1002	Creating a pulse when PLC is powered on
M10	Creating a trigger pulse for one scan cycle
D1120	PLC COM2 communication protocol
D1121	PLC communication address
Y0	Parameter initialization completed signal

Control Program:

Program Description:

- When PLC begins running, M1002 will be ON once and create a pulse with the width of one scan cycle. This action will be executed for just once during the PLC running process and is generally used to initialize devices such as D (data register), C (counter) and S (step point)
- By pressing X1, users can initialize parameters at any time during the program running process, that is, setting PLC Slave ID as No. 1, COM2 communication format as 9600, 7, E, 1 and YO to be ON .

1. Basic Program Design Examples

1.8 Common Latched Circuit and SET/RST Instructions Application

Control Purpose:

- Turn on the switch, the light will be ON; turn off the switch, the light will be OFF.

Devices:

Device	Function
X0	Switch-on button. X0 will be ON when pressed
X1	Switch-off button. X1 will be ON when pressed
Y0	Indicator

Control Program:

- Common Latched Circuit

- Latched Circuit for SET/RST Instructions

Program Description:

- In the above examples, when $\mathrm{X0}$ goes from OFF to ON, Y0 will stay in ON state. When X1 goes from OFF to ON, Y1 will stay in OFF state
- When X 0 and X 1 are enabled at the same time, it will be "Stop First", that is, Y 1 and the indicator will be OFF.

1.9 SET/RST - Latched and Unlatched Circuit

Control Purpose:

- Press START, the pump begins to pump out the water; press STOP or when the water is empty, the pump stops working.

Devices:

Device	Function
X0	START button. X0 will be ON when pressed
X1	STOP button. X 1 will be ON when pressed
X2	Level detector. X 2 will be ON if there is water in the container
M0	Trigger pulse for one scan cycle
Y0	Pump motor

Control Program:

Program Description:

- X2 will be ON If there is water in the container. When START is pressed, $\mathrm{XO}=\mathrm{ON}$, and SET instruction will be executed. Y 0 will be set, and the pump motor begins pumping the water.
- There are two situations for stopping the motor. First, when STOP is pressed, X1 = ON. PLS instruction will be executed and M0 will be ON for one scan cycle. RST instruction will thus be executed, and YO will be reset to stop pumping. Second, when the water in the container is empty, X 2 will be OFF and PLS instruction will be executed to trigger M0 for resetting YO. In this case, the pump motor will stop pumping as well.

1. Basic Program Design Examples

1.10 Alternate Output Circuit (With Latched Function)

Control Purpose:

- Setting the light ON by pressing the switch for the $1^{\text {st }}$ time, the $3^{\text {rd }}$ time, $5^{\text {th }}$ time, etc.; setting the light OFF by pressing the switch for the $2^{\text {nd }}$ time, $4^{\text {th }}$ time, $6^{\text {th }}$ time, etc.
- Restoring the indicator to the state before power off when the device is powered up again.

Devices:

Device	Function
X1	Light switch. X1 will be ON when the button is pressed
M10	Trigger pulse for one scan cycle
M512	If X1 is pressed for odd number of times, M512 ON, M513 = OFF.
M513	If X1 is pressed for even number of times, M512 = OFF, M513 = ON.
Y1	Indicator

Control Program:

Program Description:

- Pressing X 1 for the $1^{\text {st }}$ time (or odd number of times):

When the switch X 1 is pressed, X 1 will be ON and the [PLS M10] instruction will be executed for triggering M10 to be ON for one scan cycle. In this case, M10 is ON and Y1 is OFF, SET and RST instructions at line 2 will thus be executed. On the contrary, SET and RST instructions at line 3 will not be executed due to the open loop of Y1. At line 4, coil Y1 is ON because of the results of Line 2: M512 is ON and M513 is OFF. When the $2^{\text {nd }}$ scan cycle is started, SET/RST at both line 2 and line 3 will not be executed because M10 is OFF in this scan cycle. As a result, the light will be ON until the switch is pressed next time.

- Pressing X1 for the $2^{\text {nd }}$ time (or even number of times):

When the switch X 1 is pressed again, X 1 will be ON and M 10 will be ON for one scan cycle. According to the result of pressing X 1 for the first time, the state of Y 1 has been ON . SET/RST instructions at line 3 will thus be executed. In addition, SET/RST instructions at
line 2 won't be executed due to the open loop of Y1. In this case, M513 will be ON and M512 will be OFF. When the $2^{\text {nd }}$ scan cycle is started, SET/RST at both line 2 and line 3 will not be executed because M10 is OFF in this scan cycle. As a result, the light will remain OFF until the switch is pressed next time.

- Alternate output(ON/OFF) function can also be performed by using API 66 ALT instruction

1. Basic Program Design Examples

1.11 Conditional Control Circuit

Control Purpose:

- Providing lube for the gear box before the lathe spindle starts to run which aims to ensure that the oil pump motor starts first and the main motor starts subsequently.

Devices:

Device	Content
X0	Oil pump START button. X0 will be ON when pressed.
X1	Main motor START button. X0 will be ON when pressed.
X2	Oil pump STOP button. X2 will be ON when pressed.
X3	Main motor STOP button. X3 will be ON when pressed.
Y0	Oil pump motor
Y1	Main motor

Control Program:

Program Description:

- This program is a typical application of the conditional control circuit. $\mathrm{YO}=\mathrm{ON}$ when Oil Pump START button is pressed. Therefore, the oil pump will start to provide lube for the gear box of main motor(Y1)
- Under the precondition of the operating state of the Oil pump, the main motor (Y1) will be ON when the Main motor START button is pressed.
- During the operation of main motor (Y1), oil pump (Y0) needs to provide lube continuously.
- The oil pump will be stopped when Oil pump STOP button X2 is activated, and the main motor will be stopped when Main motor STOP button X3 is activated.

1.12 First-in Priority Circuit

Control Purpose:

- There are 3 groups participating in the quiz game: pupils, high school students and professors. If they want to get the chance of answering the question from the host, they must press the answer button on their table first. Other groups' pressing will be invalid if any group gets the chance successfully
- There are 2 answer buttons for the pupil group and professor group and 1 answer button for the high school student group. In order to give preferential treatment to the pupil group, Y0 will be ON if any one of $\mathrm{X0}$ or X 1 is pressed. However, in order to limit the professor group, Y 2 will be ON when X 3 and X 4 are pressed at the same time. For the high school student group, Y 1 will be ON when X 2 is pressed.
- If the host presses X 5 (Reset button), Y0, Y1 and Y 2 will be OFF.

Devices:

Device	
X0	Answer button for pupil group
X 1	Answer button for pupil group
X 2	Answer button for high school student group
X 3	Answer button for professor group
X 4	Answer button for professor group
X 5	Reset button for host
Y 0	Indicator for pupil group
Y 1	Indicator for high school student group
Y 2	Indicator for professor group

1. Basic Program Design Examples

Control Program:

Program Description:

- If the host didn't press the reset button $\mathrm{X} 5,[\mathrm{MC} \mathrm{N} 0]$ instruction will be executed and the program between MC and MCR will also be executed normally.
- The answer buttons are connected in parallel connection for the pupil group, and in series connection for the professor group. For the high school student group, there is only one answer button. If one group presses the answer button successfully, its indicator will form a latching circuit, that is, the indicator will be ON even the button is released.
- Through the interlock circuit, any other button pressings will be invalid as long as one indicator is ON
- When the host presses the reset button, $\mathrm{X} 5=\mathrm{ON}$. [MC N0] instruction and the program between MC and MCR will not be executed. Y0, Y1 and Y2 will be out of power, and all the indicators for the 3 groups will be OFF. When the host releases the button, X5 = OFF. The program between MC and MCR will be executed normally again, and the new round will begin as well.

1.13 Last-in Priority Circuit

Control Purpose:

- There are 4 buttons corresponding to 4 indicators. The program is to turn on the indicators corresponding to pressed buttons and to turn off the previous ON indicators.

Devices:

Device	Function
X0	Button 1. $\mathrm{X0}$ will go from OFF to ON when pressed
X 1	Button 2. X 1 will go from OFF to ON when pressed
X 2	Button 3. X 2 will go from OFF to ON when pressed
X3	Button 4. X 3 will go from OFF to ON when pressed
Y0	Indicator 1
Y1	Indicator 2
Y2	Indicator 3
Y3	Indicator 4

Control Program:

Program Description:

- When a button is pressed, the corresponding device X will go from OFF to ON. In this scan cycle, PLS instruction is executed, and the corresponding internal relay M is enabled as well. CMP instruction will be executed and the compared result is K1M0>0 which makes M10 ON but M11 OFF. [MOV K1M0 K1Y0] instruction will then be executed and sent out the state of M to its corresponding output Y . At the same time, the previous ON indicator (Y) will be turned off.
- When it comes to the $2^{\text {nd }}$ scan cycle, PLS instructions will not be executed and the value of M0~M3 will be 0 . Therefore, the CMP instruction will be executed and set M11 to be ON $(K 1 M 0=0)$. [MOV K1M0 K1Y0] instruction will not be executed, and the 0 state of device M will not be sent out, either. In this case, Output Y will remain its original state until any other button is pressed next time.

1. Basic Program Design Examples

1.14 Entry/Exit Control of the Underground Car Park

Control Purpose:

- The entry/exit of the underground car park is a single lane passage which needs the traffic lights to control the cars. Red lights prohibit cars entering or leaving while green lights allow cars to enter or leave.
- When a car enters the passage from the entry of the ground floor, the red lights both on the ground floor and the basement will be ON, and the green lights will be OFF. Any car entering or leaving is prohibited during the process till the car passes through the passage completely. When the passage is clear, the green lights will be ON again and allow other cars entering from the ground floor or the basement.
- Similarly, when a car leaves the basement and enters the passage, any other car entering or leaving is prohibited till the car passes from the passage to the ground completely.
- When PLC runs, the initial setting of traffic lights will be green lights ON and red lights OFF.

Devices:

Device	Function
X1	Photoelectric switch at the ground floor entry/exit. X1 will be ON when a car passes.
X2	Photoelectric switch at the basement entry/exit. X2 will be ON when a car passes.
M1	M1 will be ON for one scan cycle when a car from the ground floor passes X1.
M2	M2 will be ON for one scan cycle when a car from the basement passes X1.
M3	M3 will be ON for one scan cycle when a car from the basement passes X2.
M4	M4 will be ON for one scan cycle when a car from the ground floor passes X2
M20	M20 $=$ ON during the process of a car entering the passage from the ground floor.
M30	M30 $=$ ON during the process of a car entering the passage from the basement.
Y1	Red lights at the entry/exit of the ground floor and the basement
Y2	Green lights at the entry/exit of the ground floor and the basement

Control Program:

Program Description:

- The ground floor and the basement share the same red light signal Y 1 and green light signal Y2.
- The key of the program is to identify that the car is entering or leaving the passage at the ground floor entry/exit when M1 is ON to activate Y1 because [PLS M1] will be executed in both entering and leaving conditions. Therefore, the confirming signal M20 is required for confirming that the car is entering the passage from the ground floor.
- Also, it needs to identify that the car is entering or leaving the passage at the basement entry/exit when M3 is ON because [PLS M3] will be executed in both entering and leaving conditions. Therefore, the confirming signal M30 is required for confirming that the car is entering the passage from the basement.

1. Basic Program Design Examples

1.15 Forward/Reverse Control for the Three-Phase Asynchronous Motor

Control Purpose:

- Controlling the motor to run forward when Forward is pressed, run reverse when Reverse is pressed and stop when Stop is pressed.

Devices:

Device	Function
X0	Forward button of the motor. X0 will be ON when pressed
X1	Reverse button of the motor. X1 will be ON when pressed
X2	Stop button. X2 will be ON when pressed.
T1	1 sec timer
T2	1 sec timer
Y0	Forward contactor
Y1	Reverse contactor

Control Program:

Program Description:

- $\mathrm{XO}=\mathrm{ON}$ when Forward is pressed. After 1 second, contactor Y0 will be enabled, and the motor begins to run forward. On the other hand, $\mathrm{X} 1=\mathrm{ON}$ when Reverse is pressed. After 1 second, contactor Y1 will be enabled, and the motor begins to run reverse. Besides, Y0 and Y 1 will be disabled and the motor will stop running when X 2 is pressed.
- The two timers in the program are used to avoid the interphase short-circuit when the motor changes its running mode. The short circuit may occur if another contactor is enabled instantly while the electric arc in the disabled contactor still exists.

1.16 Selective Execution of Programs

Control Purpose:

- There are pigments of 3 colors. By controlling different switches, operators can fill the cans with corresponding pigments.

Devices:

Device	Function
X0	Filling Start switch. X0 will be ON when turned on.
X1	Yellow control switch. X1 will be ON when turned on.
X2	Blue control switch. Turn it on, X2 will be On
X3	Green (mixing of yellow and blue) control switch. X3 will be ON when turned on
Y0	Yellow control valve
Y1	Blue control valve

1. Basic Program Design Examples

Control Program

Program Description:

- The master switch of filling control needs to be turned on $(X 0=O N)$ before filling started. When both yellow and blue are filled at the same time, it will become green.
- When the switch of filling yellow pigment is turned on, $\mathrm{X} 1=\mathrm{ON}$. The first MC ~MCR instruction will be executed. $\mathrm{Y} 0=\mathrm{ON}$, and the system begins to fill the yellow color.
- When the switch of filling blue pigment is turned on, $\mathrm{X} 2=\mathrm{ON}$. The second MC \sim MCR instruction will be executed. $\mathrm{Y} 1=\mathrm{ON}$, and the system begins to fill the blue color.
- When the switch of filling green pigment is turned on, $\mathrm{X} 3=\mathrm{ON}$, both of the two MC ~MCR instructions will be executed, and the system begins to fill the green color.

1. Basic Program Design Examples

1.17 MC/MCR - Manual/Auto Control

Control Purpose:

- When the button Manual is pressed, the robotic arm will begin to execute the manual control process: pressing Clip to clip the product from conveyor A, pressing Transfer to move the product to the conveyor B , and pressing Release to release the product and send it away by conveyor B.
- When the button Auto is pressed, the robotic arm will begin to execute the auto control process once: clip product (keep holding this product before releasing) \rightarrow transfer product (the action takes 2 sec) \rightarrow release the product. Auto control process can be performed one more time if the button Auto is pressed again.
- Manual control process and auto control process are interlocked.

Devices:

Device	Function
X0	Auto button. X0 goes from OFF to ON when pressed.
X1	Manual button. X1 goes from OFF to ON when pressed
X2	Clip button. X2 will be ON when pressed.
X3	Transfer button. X3 will be ON when pressed.
X4	Release button. X4 will be ON when pressed.
M0~M2	Auto control process
M3~M5	Manual control process
M10	Auto control selection
M11	Manual control selection
T0	2 sec timer
Y0	Product clipping/releasing. Y0 is ON/OFF when clipping/releasing the product.
Y1	Product transferring

1. Basic Program Design Examples

Control Program:

Program Description:

- When X0 goes from OFF to ON, the auto control process will be executed once, whereas when X1 goes from OFF to ON, the manual control process will be executed. In the manual control, the clipping and releasing actions require pressing the corresponding button for one time. However, the button Transfer should be pressed for 2 sec during the moving process till the product is moved to Conveyor B.
- X 0 and X 1 are interlocked. When the auto control process is executed, the robotic arm will perform the following actions: first "clipping", then "transferring" (for 2 sec.), and "releasing." When the manual control process is executed, the controlling actions will be performed by 3 corresponding buttons: clipping product by turning on $Y 0$, transferring product by pressing Y 1 and releasing product by turning off Y 0 .

1. Basic Program Design Examples

1.18 STL Manual/Auto Control

Control Purpose:

- When the button Manual is pressed, the robotic arm will begin to execute the manual control process: pressing Clip to clip the product from conveyor A, pressing Transfer to move the product to the conveyor B, and pressing Release to release the product and send it away by conveyor B.
- When the button Auto is pressed, the robotic arm will begin to execute the auto control process once: clip product (keep holding this product before releasing) \rightarrow transfer product (the action takes 2 sec) \rightarrow release the product. Auto control process can be performed one more time if the button Auto is pressed again.
- Manual control process and auto control process are interlocked.

Devices:

Device	Function
X0	Auto button. X0 goes from OFF to ON when pressed.
X1	Manual button. X1 goes from OFF to ON when pressed
X2	Clip button. X2 will be ON when pressed.
X3	Transfer button. X3 will be ON when pressed.
X4	Release button. X4 will be ON when pressed.
S0	Initial step
S20	Auto control step
S21	Manual control step
T0	2 sec timer
Y0	Product clipping/releasing. Y0 is ON/OFF when clipping/releasing the product
Y1	Product transferring

Control Program:

Program Description:

- When X0 goes from OFF to ON, the step S20 will be set to execute auto control process one time, and the manual control process will be prohibited at the same time. Auto control process can be performed one more time if the button Auto is pressed again.
- The auto control process performed by the robotic arm: clipping product when $\mathrm{XO}=\mathrm{ON}$ (keep holding this product before releasing) \rightarrow transferring product when $\mathrm{Y} 1=\mathrm{ON}$ (the action takes 2 sec$) \rightarrow$ releasing the product when $\mathrm{YO}=\mathrm{OFF}$.
- When X1 goes from OFF to ON, the step S21 will be set to execute manual control process one time, and the auto control process will be prohibited at the same time.
- The manual control process performed by the robotic arm: pressing Clip(X2) to clip the product from conveyor A , pressing $\operatorname{Transfer}(\mathrm{X} 3)$ to move the product to the conveyor B , and pressing Release(X4) to release the product and send it away by conveyor B.

1. Basic Program Design Examples

MEMO

2.1 Product Mass Packaging

Control Purpose:

- Once the photoelectric sensor detects 10 products, the robotic arm will begin to pack up. When the action is completed, the robotic arm and the counter will be reset.

Devices:

Device	Function
$\mathrm{X0}$	Photoelectric sensor for counting products. X0 $=$ ON when products are detected.
X 1	Robotic arm action completed sensor. X1 $=$ ON when packing is completed.
$\mathrm{C0}$	Counter: 16-bit counting up (general purpose)
Y0	Robotic arm for packing

Control Program:

Program Description:

- Once the photoelectric sensor detects a product, XO will go from OFF to ON once, and CO will count for one time.
- When the present value in CO reaches 10 , the Normally Open contact CO will be closed. YO $=\mathrm{ON}$, and the robotic arm will begin to pack.
- When the packing is completed, the robotic arm action completed sensor will be enabled. X1 will go from OFF to ON and RST instruction will be executed. YO and CO will be reset for the next packing task.

2. Counter Design Examples

2.2 Daily Production Record (16-bit Counting Up Latched Counter)

Control Purpose:

- The production line may be powered off accidentally or turned off for noon break. The program is to control the counter to retain the counted number and resume counting after the power is ON again.
- When the daily production reaches 500 , the target completed indicator will be ON to remind the operator for keeping a record.
- Press the Clear button to clear the history records. The counter will start counting from 0 again.

Devices:

Device	Function
X0	Photoelectric sensor. Once detecting the products, X0 will be ON.
X1	Clear button
C120	Counter: 16-bit counting up (latched)
Y0	Target completed indicator

Control Program:

Program Description:

- The latching counter is demanded for the situation of retaining data when power-off.
- When a product is completed, C120 will count for one time. When the number reaches 500 ,

2. Counter Design Examples

target completed indicator Y 0 will be ON .

- For different series of DVP-PLC, the setup range of 16-bit latching counter is different. C112 ~ C127 for ES/EX/SS series, C96 ~ C199 for SA/SX/SC series and C100 ~ C199 for EH series.

2. Counter Design Examples

2.3 Products Amount Calculation (32-bit Counting Up/Down Counter)

Control Purpose:

- This program is used for monitoring the product amount in the warehouse by photoelectric sensors at both entry and exit. When the amount reaches 40,000, the alarm will be enabled.

Devices:

Device	Function
x0	Photoelectric sensors for monitoring incoming goods. X0 = ON when incoming detected.
X1	Photoelectric sensors for monitoring outgoing goods. X1 = ON when outgoing detected.
M1216	Counting mode of C216(ON: counting down)
C216	32-bit counting up/down counter
Y0	Alarm

Control Program:

Program Description:

- The key of this example is using the 32-bit addition/subtraction flag M1216 to control the counting up/ down of C216. When X0 goes from OFF to ON, M1216 $=$ OFF, and C216 will count up; when X1 goes from OFF to ON, M1216 = ON, C216 will count down.
- When the present value of C 216 reaches $40,000, \mathrm{C} 216=\mathrm{ON}$, and the alarm Y 0 will be enabled.

2.4 24-hour Clock Operated by 3 Counters

Control Purpose:

- Using 3 counters together with the flag of M1013 (1s clock pulse) to operate a 24 -hour clock.

Devices:

Device		Function
C0	count per second	
C1	count per minute	
C2	count per hour	
M1013	1s clock pulse	

Control Program:

Program Description:

- The key of operating a 24 -hour clock is to use M1013 (1s clock pulse). When the program is executed, C0 will count once per second. When the counted number reaches 60(1 minute), $\mathrm{C} 0=\mathrm{ON} . \mathrm{C} 1$ will count once, and C0 will be reset at the same time; similarly, when the counted number in C1 reaches 60(1 hour), C1 = ON. C2 will count once, and C1 will be reset at the same time. Furthermore, when the present value in C2 reaches $24, \mathrm{C} 2$ will be reset, and the 24 -hour counting process will start again.
- The 24-hour clock operates by using C0 to count "second", C1 to count "minute" and C2 to count "hour." In this clock, the value of "second", "minute" and "hour" can be read by C0, C1 and C 2 correspondingly. When the set value of C 2 is 12 , the clock will be a 12 -hour clock.

2. Counter Design Examples

2.5 A B-phase Pulse High-speed Counter

- Wiring for Differential Input (high-speed, high-noise condition)

- Wiring for Differential Output

Control Purpose:

- DVP32EH00M sends AB-phase pulse to control the servo at a speed of 10,000 pulses per second. The motor rotation will be encoded by the encoder and the result will be transferred to the input points (differential input) of PLC high-speed counter. If the counted value in PLC high-speed counter is different from the number of pulse sent by the MPU, the alarm will be enabled.

Devices:

Device	Function
Y0	100KHz pulse output
Y5	Alarm indicator
M1013	1s clock pulse
M1029	Pulse output completed flag
D1220	Setting the first group output phase, CH0(Y0, Y1)
C251	High-speed counter

2. Counter Designing Example

Control Program:

The output speed of Y 0 is 10000 pulses per

Program Description:

- In this example, M1013 is used to control PLC for sending pulses. D1220 $=$ K0 activates Y0 to output pulses and transfer the encoded feedback signal of servo motor from the encoder to the high-speed inputs (X0, X1). X0 and X1 are corresponded to high-speed counter C251, whose max counting frequency is 200 kHz .
- When pulse sending is completed, M1029 = ON. The Load Compare instruction DLD<= will be executed. If the difference between the value of C 251 and the number of pulses is above 10(C251 value $\leqq \mathrm{K} 9990$), the alarm Y5 will be enabled.
- When M1029 = ON, [RST C251] will be executed. The value of C251 will be cleared to ensure that C251 will start counting from 0 next time.
- Since the output signal of servo encoder is differential signal, the example requires

DVP32EH00M model which supports differential signal input with its input terminal $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 4$, and X 5 .

3. Timer Design Examples

3.1 Delay OFF Program

Control Purpose:

- Enabling the indicator to be ON immediately and OFF after a 5 sec delay by the switch

Devices:

Device	
X1	X1 $=$ OFF when the switch is turned off
T1	5 sec timer. Time base $=100 \mathrm{~ms}$
Y1	Output indicator

Control Program:

Program Description:

- $\mathrm{X} 1=\mathrm{ON}$ when the switch is turned on. The NC (Normally Closed) contact X 1 will be activated, and TMR instruction will not be executed. Coil T1 will be OFF and so will the NC contact T 1 . Because $\mathrm{X} 1=\mathrm{ON}$, the indicator Y 1 will be ON and latched.
- $\mathrm{X} 1=\mathrm{OFF}$ when the switch is turned off. The NC contact X 1 will not be activated, which makes TMR instruction executed. Indicator Y1 will remain ON by the latched circuit until T1 reaches its set value.
- When timer T1 reaches its set value of 5 seconds, coil T1 will be ON. The NC contact T1 will be activated, which makes the indicator Y1 OFF.
- Delay OFF function can also be performed by using API 65 STMR instruction.

3. Timer Design Examples

3.2 Delay ON Program

Control Purpose:

- Enabling the indicator to be ON after a 3 sec delay and OFF immediately by the switch

Devices:

Device	Function
X1	X1 = ON when the switch is turned on
T1	3 sec timer, time base $=100 \mathrm{~ms}$
Y1	Output indicator

Control Program:

Program Description:

- When $\mathrm{X} 1=\mathrm{ON}$, TMR instruction will be executed. Timer T1 will be ON and start counting for 3 sec . When T1 reaches its set value, the NO (Normally Open) contact T1 will be activated and indicator YI will be ON.
- When X1 = OFF, TMR instruction will not be executed. Timer T1 will be OFF and so will NO contact T1. Therefore, the indicator Y1 will be OFF.

3.3 Delay ON/OFF Program

Control Purpose:

- Enabling the indicator to be ON after a 5 sec delay and OFF after a 3 sec delay by the switch

Devices:

Device	
X1	X1 $=$ ON when the switch is turned on.
T0	5 sec timer, time base $=100 \mathrm{~ms}$
T1	3 sec timer, time base $=100 \mathrm{~ms}$
Y1	Output indicator

Control Program:

Program Description:

- When $\mathrm{X} 1=\mathrm{ON}, \mathrm{T} 0$ will start counting for 5 sec . When T0 reaches its set value, the NO contact T0 will be ON while NC contact T1 will remain OFF, which makes the indicator Y 1 to be ON and latched.
- When X1 = OFF, T1 will start counting for 3 sec . When T1 reaches its set value, the NC contact T1 will be activated while the NO contact TO will remain OFF, which makes the indicator Y1 to be OFF.

3. Timer Design Examples

3.4 Sequential Delay Output (Starting 3 Motors Sequentially)

Control Purpose:

- Starting the oil pump motor immediately when START is pressed. The main motor will be started after a 10 sec delay and then the auxiliary motor after a 5 sec delay. In addition, stopping all motors immediately when STOP is pressed.

Devices:

Device	
X0	X0 $=$ ON when START is pressed.
X1	$\mathrm{X} 1=$ ON when STOP is pressed.
T0	10 sec timer. Time base: 100 ms
T1	5 sec timer. Time base: 100 ms
Y0	Starting the oil pump motor
Y1	Starting the main motor
Y2	Starting the auxiliary motor

3. Timer Design Examples

Control Program:

Program Description:

- When START is pressed, the NO contact XO will be activated, which makes YO to be ON and latched. The oil pump motor will start the lube system. At the same time, [TMR T0 K100] instruction will be executed. When TO reaches its set value of 10 sec , the NO contact TO will be ON.
- When the NO contact TO is ON, Y1 will be ON and latched, which starts the main motor and stops timer T0. At the same time, [TMR T1 K50] is executed, and the NO contact T1 will be ON when timer T1 reaches its set value.
- When the NO contact T1 is ON, Y2 will be ON and latched, which starts the auxiliary motor and stops T 1 .
- When STOP is pressed, the NC contact X1 will be activated, which makes Y0, Y1 and Y2 OFF. The oil pump motor, main motor and auxiliary motor will stop working.

3. Timer Design Examples

3.5 Pulse-Width Modulation

Control Purpose:

- Performing Pulse Width Modulation function by changing the set value of the timer in the program. The oscillating pulse is as below: ($\mathrm{YO}=\mathrm{ON}$ for 1 sec . The cycle $=2 \mathrm{sec}$)

Devices:

Device	
X0	X0 $=$ ON when the switch is turned on
T0	1 sec timer. Time base: 100 ms
T1	2 sec timer. Time base: 100 ms
Y0	Oscillating pulse output

Control Program:

Program Description:

- When $\mathrm{X} 0=\mathrm{ON}$, timer T0/T1 will be activated. Y0 will be ON until timer T0 reaches its set value. When timer T1 reaches its set value, T0/T1 will be reset. Therefore, Y0 will output the above oscillating pulse continuously. When $\mathrm{XO}=\mathrm{OFF}$, the output Y 0 will be OFF as well.
- Pulse Width Modulation function can be modified by changing the set value of the timer in the program.
- Pulse Width Modulation function can also be performed by using API 144 GPWM instruction.

X0	GPWM	K1000	K2000	Y0

3. Timer Design Examples

3.6 Artificial Fishpond Water Level Monitoring System (Flashing Circuit)

Control Purpose:

- Feeding or draining water automatically when the water level of artificial fishpond is not at the normal level. In addition to feeding / draining water, enabling the alarm and alarm lamp when the water is above or below the alarm level.
- Stopping the alarm when RESET is pressed.

Devices:

Device	Function
X 0	$\mathrm{X} 0=$ ON when the water is above the lowest level of alarm level.
X 1	$\mathrm{X} 1=\mathrm{ON}$ when the water is above the lowest level of normal level.
X 2	$\mathrm{X} 2=$ ON when the water is above the highest level of normal level.
X 3	$\mathrm{X} 3=\mathrm{ON}$ when the water is above the highest level of alarm level.
X 4	$\mathrm{X} 4=\mathrm{ON}$ when RESET is pressed.
T 1	500 ms timer. Time base: 100 ms.
T 2	500ms timer. Time base: 100 ms.
Y 0	1\# drainage pump
Y 1	Feeding pump
Y 2	2\# drainage pump
Y 3	Alarm lamp
Y 4	Alarm

3. Timer Design Examples

Control Program:

Program Description:

- When the water is at normal level: $\mathrm{X0}=\mathrm{ON}, \mathrm{X} 1=\mathrm{ON}, \mathrm{X} 2=\mathrm{OFF}$ and $\mathrm{X} 3=\mathrm{OFF}$. Therefore, Y0 and Y2 will be OFF. Both the drainage pump and the feeding pump will not work.
- When the water is lower than the normal level, X0 $=\mathrm{ON}, \mathrm{X} 1=\mathrm{OFF}, \mathrm{X} 2=\mathrm{OFF}$ and $\mathrm{X} 3=\mathrm{OFF}$. Because $\mathrm{X} 1=\mathrm{OFF}, \mathrm{Y} 1$ will be ON. The feeding pump will start working.
- When the water is below the lowest of alarm level, X0 $=O F F, X 1=O F F, X 2=O F F$ and $X 3=$ OFF. Because X1 = OFF, Y1 will be ON. The feeding pump will start working. In addition, because $\mathrm{XO}=\mathrm{OFF}$, the flashing circuit will be activated, which makes $\mathrm{Y} 3=\mathrm{ON}$ and $\mathrm{Y} 4=\mathrm{ON}$, The alarm lamp will flash and the alarm will ring.
- When the water is above the normal level, $\mathrm{XO}=\mathrm{ON}, \mathrm{X} 1=\mathrm{ON}, \mathrm{X} 2=\mathrm{ON}, \mathrm{X} 3=\mathrm{OFF}$. Because X2 = ON, Y2 will be ON. 2\# drainage pump will drain water from the fishpond.
- When the water is above the highest of alarm level, $\mathrm{X} 0=\mathrm{ON}, \mathrm{X} 1=\mathrm{ON}, \mathrm{X} 2=\mathrm{ON}, \mathrm{X} 3=\mathrm{ON}$. Because $\mathrm{X} 2=\mathrm{ON}, \mathrm{Y} 2$ will be ON. 2\# drainage pump will work. In addition, because $\mathrm{X} 3=\mathrm{ON}$, YO will be ON. 2\# drainage pump will work. Besides, the alarm circuit will be executed, which makes $\mathrm{Y} 3=\mathrm{ON}$ and $\mathrm{Y} 4=\mathrm{ON}$. The alarm lamp will flash and the alarm will ring.
- When Reset is pressed, the NC contact X 4 will be activated. $\mathrm{Y} 3=\mathrm{OFF}$ and $\mathrm{Y} 4=\mathrm{OFF}$. Both the alarm and the alarm lamp will stop working.

3. Timer Design Examples

3.7 Burn-in Test System (Timing Extension)

Control Purpose:

- Warning the operator to take out PLC from the burn-in room by the test completed indicator after 2.5 hours burn-in process.

Devices:

Device	Function
X0	When X0 $=$ ON, the burn-in test starts
T0	3,000 sec timer. Time base: 100 ms
T1	3,000 sec timer. Time base: 100 ms
T2	3,000 sec timer. Time base: 100 ms
Y0	Burn-in test completed indicator

3. Timer Design Examples

Control Program:

Program Description:

- The upper bound value for a 16 -bit timer is $100 \mathrm{~ms} \times 32767=3276.7 \mathrm{~s}$, so it needs several timers to work together for a timing extension application which is more than 1 hour (3600 sec.) The total time is the sum of each timer's set value.
- When the burn in test is started, XO $=\mathrm{ON}$. The timer TO will start to count for $100 \mathrm{~ms} \times 30000$ $=3000$ sec. When T0 reaches its set value, the NO contact T0 will be ON and T1 will start to count for another $100 \mathrm{~ms} \times 30000=3000 \mathrm{sec}$. When T1 reaches its set value, T2 will count one more 3000 sec and turn on the NO contact T2. Finally, the burn-in test completed indicator YO will be ON. The total time of the test is $3000 \mathrm{~s}+3000 \mathrm{~s}+3000 \mathrm{~s}=9000 \mathrm{~s}=$ $150 \mathrm{~min}=2.5 \mathrm{~h}$.
- The timing extension function can also be performed by using API 169 HOUR instruction.

3.8 Star-Delta Reduced Voltage Starter Control

PLC External Wiring

Control Purpose:

- Usually the starting current of the three-phase AC asynchronous motor is 5~7 times larger than the rated current. To reduce the effect of the starting current on the electrified wire fence, a star-delta reduced voltage starter should be applied.
- Starting process of a star-delta reduced voltage starter:

When the switch is turned on, the contactors of both motor starter and "Star Reduced Voltage Starter" will be enabled first. After a 10 sec delay, the contactor of "Star Reduced Voltage Starter" will be disabled. Finally, the contactor of "Delta Reduced Voltage Starter" will be enabled after 1 sec , which operates the main motor circuit normally. The control purpose in this process is to assure the contactor of "Star Reduced Voltage Starter" is disabled completely before the contactor of "Delta Reduced Voltage Starter" is enabled.

Devices:

Device	
X0	X0 $=$ ON when START is pressed.
X 1	$\mathrm{X} 1=$ ON when STOP is pressed.
T1	10 sec timer. Time base: 100 ms
T2	1 sec timer. Time base: 100 ms
Y0	Motor starting contactor KM0
Y1	"Star Reduced Voltage Starter" contactor KM1
Y2	"Delta Reduced Voltage Starter" conntactor KM2

3. Timer Design Examples

Control Program:

Program Description:

- $\quad \mathrm{XO}=\mathrm{ON}$ when START is pressed. YO will be ON and latched. The motor starting contactor KMO will be ON and the timer TO will start to count for 10 sec . At the same time, because Y0 $=\mathrm{ON}, \mathrm{T} 0=\mathrm{OFF}$ and $\mathrm{Y} 2=\mathrm{OFF}, \mathrm{Y} 1$ will be ON. The "Star Reduced Voltage Starter" contactor KM1 will be activated.
- When timer T0 reaches its set value, T0 will be ON and Y1 will be OFF. Timer T1 will start to count for 1 sec . After 1 sec , T1 = ON and Y2 = ON. "Delta Reduced Voltage Starter" contactor KM2 will be activated.
- $\quad \mathrm{X} 1=\mathrm{ON}$ when STOP is pressed. Y0, Y1 and Y 2 will be OFF and the motor will stop running no matter it is in starting mode or running mode.

3.9 Automatic Door Control

Control Purpose:

- When someone enters the infrared sensing field, opening motor starts working to open the door automatically till the door touches the opening limit switch
- If the door touches the opening limit switch for 7 sec and nobody enters the sensing field, the closing motor starts working to close the door automatically till the closing limit switch touched together.
- Stop the closing action immediately if someone enters the sensing field during the door closing process.

Devices:

Device	Function
$\mathrm{X0}$	$\mathrm{X0}=\mathrm{ON}$ when someone enters the sensing field.
X 1	Closing limit switch. $\mathrm{X} 1=\mathrm{ON}$ when 2 switches touched together.
X 2	Opening limit switch. $\mathrm{X} 2=$ ON when the door touched the switches.
T0	7 sec timer. Time base: 100 ms
Y0	Opening motor
Y1	Closing motor

3. Timer Design Examples

Control Program:

Program Description:

- $\mathrm{XO}=\mathrm{ON}$ if someone enters the sensing field of the infrared sensor. Y0 will be ON and latched, and the door will be opened as long as the opening limit switches $\mathrm{X} 2=\mathrm{OFF}$.
- When the door touches the opening limit switches, $\mathrm{X} 2=\mathrm{ON}$. The timer T0 will start to count for 7 sec if no one enters the sensing field ($\mathrm{XO}=\mathrm{OFF}$). After 7 sec ., Y1 will be ON and latched and the door will be closed.
- During the closing process, $\mathrm{X0} 0=\mathrm{ON}$ if someone enters the sensing field. The NC contact X0 will be activated to turn Y1 off. Because $\mathrm{X0} 0=\mathrm{ON}, \mathrm{X} 2=\mathrm{OFF}$ and $\mathrm{Y} 1=\mathrm{OFF}, \mathrm{Y} 0$ will be ON and the door will be opened once again.

3.10 Automatic Liquids Mixing Control System

Control Purpose:

- Automatically infusing the container with liquids A and B in order when START is pressed. When it reaches the set level, mix the two liquids evenly then open the valve to let out the mixture.

Devices:

Device	
X0	X0 $=$ ON when START is pressed.
X1	Low level float sensor. $\mathrm{X} 1=$ ON when the liquid level reaches X 1.
X 2	High level float sensor. $\mathrm{X} 2=$ ON when the liquid level reaches X 2.
X10	EMERGENCY STOP button. $\mathrm{X} 10=$ ON when the button is pressed.
T0	60 sec timer. Time base: 100 ms
T1	120 sec timer. Time base: 100 ms
Y0	Liquid A inlet
Y1	Liquid B inlet
Y2	Mixture outlet
Y3	Agitator

3. Timer Design Examples

Control Program:

Program Description:

- $\mathrm{XO}=\mathrm{ON}$ when START is pressed. YO will be ON and latched, and the valve will be opened for infusing liquid A until the level reaches the low-level float sensor.
- $\quad \mathrm{X} 1=\mathrm{ON}$ when the level reaches the low-level float sensor. Y1 will be ON and latched, and the valve will be opened for infusing liquid B until the level reaches the high-level float sensor.
- $\quad \mathrm{X} 2=\mathrm{ON}$ when the level reaches the high-level float sensor. Y3 will be ON and activates the agitator. Also, timer T0 will start to count for 60 sec . After 60 sec , T0 will be ON, and the agitator motor Y 3 will stop working. Y 2 will be ON and latched, and the mixture will drain out of the container.
- When Y2 $=$ ON, timer T1 will start to count for 120 sec . After $120 \mathrm{sec}, \mathrm{T} 1$ will be ON and Y2 will be OFF. The draining process will be stopped.
- When an error occurs, press EMERGENCY STOP button X10. The NC contact X10 will be ON to disable all the outputs. The system will then stop running.

3.11 Automatic Coffee Maker

Control Purpose:

- Making the paper cup come out of the outlet when a coin is inserted. At the same time, the coffee pours in the mixing container. After 2 sec , the hot water pours in. 60 sec later, the ready-made coffee will be pouring out from the coffee outlet.

Devices:

Device	Function
X0	Coin detector. X0 $=$ ON when a coin is inserted.
X1	Pressure detector. X1 $=$ ON when the liquid in the container reaches a certain amount of pressure.
T0	2 sec timer. Time base: 100 ms
T1	60 sec timer. Time base: 100 ms
Y0	Paper cup outlet
Y1	Coffee outlet
Y2	Hot water outlet
Y3	Agitator
Y4	Ready-made coffee outlet

Control Program:

3. Timer Design Examples

Program Description:

- $\mathrm{X} 1=\mathrm{ON}$ when a coin is inserted. Y 0 and Y 1 will be ON and latched. A paper cup will be sent out, and a certain amount of coffee will be poured into the container at the same time.
- YO and Y 1 will be ON for 2 sec which is the set value of timer T0. When NO contact T0 is ON, Y2 will be activated and the hot water will be poured in the container. At the same time, the outlets of both paper cup and coffee will be closed.
- When the liquid in the container reaches a certain amount of pressure, $\mathrm{X} 1=\mathrm{ON}$. Therefore, the hot water outlet Y 2 will be reset, and the agitator Y 3 will be ON for 60 sec . After 60 sec , NO contact T1 will be ON. Y4 will be ON and latched, and Y3 will be reset at the same time. The agitator will stop working, and the ready-made coffee will be pouring out from the outlet.
- When the coffee is poured into the paper cup completely, X 1 will be OFF and Y 4 will be reset. The ready-made coffee outlet will be closed.

3.12 Automatic Urinal Flushing Control Program

Control Purpose:

- If a user stands in front of the urinal for more than 3 sec , the flushing control device will flush the urinal for 3 sec (the first flushing). When the user leaves the urinal, flush for another 4 sec then stop automatically (the second flushing).

- Stopping the first flushing and starting the second flushing if the first user leaves the urinal during the first flushing process.

- If the second user comes before the finishing of the 4 sec flushing, the flusher will finish the 4 sec flushing process and skip the first 3 sec flushing process. When the second user leaves the urinal, the flusher will perform another 4 sec flushing.

Devices:

Device	Function
X0	Infrared sensor. X0 $=$ ON when a user is detected.
M0 ~ M2	Internal auxiliary relay
T0	3 sec timer. Time base: 100 ms
T1	3 sec timer. Time base: 100 ms
T2	4 sec timer. Time base: 100 ms
Y0	Flushing valve

3. Timer Design Examples

Control Program:

Program Description:

- When a user is detected, infrared sensor X0 will be ON. In this case, TO will be ON and start to count for 3 sec . If the user leaves in $3 \mathrm{sec}, \mathrm{XO}=\mathrm{OFF}$, and T0 will be OFF. No action will be performed. If the user stands for more than 3 sec , the NO contact TO will be activated, which turns on M0. The first flushing will start $(\mathrm{YO}=\mathrm{ON})$.
- M1 is latched in this program. If the user leaves after 3 sec , which means the NO contact M0 $=\mathrm{ON}$ and the NC contact XO is OFF, M1 will be ON and latched. The second flushing will then be started. After 4 sec , both the NO contact and the NC contact of T 2 will be activated. Therefore, Y 0 will be OFF, and the flushing will be stopped. M 0 and M 1 will be reset. Because M1 is latched, the second flushing process will certainly be executed whether $\mathrm{X0}$ changes its state or not.

3. Timer Design Examples

3.13 Performing Accumulative Function with Normal Timer

Control Purpose:

- Ensuring that the customers wash their cars for entire 5 minutes no matter how many times the sprayer valve stops. .

Devices:

Device	Function
X0	Sprayer valve switch. $\mathrm{X0}=$ ON when the sprayer handle is held on tightly.
X1	Coin detector. $\mathrm{X} 1=$ ON when an inserted coin is detected.
M1	Creating a trigger pulse for one program scan cycle
T1	Timer. Time base: 100 ms
D10	Storing present value of T1
Y0	Sprayer valve

Control Program:

3. Timer Design Examples

Program Description:

- When customers insert coins in the slot, $\mathrm{X} 1=\mathrm{ON}$. The time value of D 10 will be cleared.
- When customers compress the sprayer handle, $\mathrm{XO}=\mathrm{ON}$. PLS instruction will be executed. M1 will be ON for one program scan cycle, which starts T 1 to count from 0 to 5 min (T1 = K 3000). In this case, $\mathrm{Y} 0=\mathrm{ON}$, and the sprayer valve is open.
- If the sprayer handle is released, the timer will stop counting. The present value in the timer will be saved and the water spraying will be interrupted.
- When customers compress the sprayer handle again, the timer will start to count from the value saved in D10. Because the present value of T1 is sent to D10 and saved when T1 is working, the saved value will be sent to T1 as its present value when T1 is activated again. Therefore, even if there are some interruptions of the sprayer valve in the washing process, the program assures customers of entire 5 minutes car washing service.

3. Timer Design Examples

3.14 Performing Teaching Function with Normal Timer

Control Purpose:

- In Manual mode, the engineers should adjust stamping time according to their experience. The stamping time depends on the time of pressing Teach.
- In Auto mode, if Start is pressed, the machine will perform stamping process once according to the time value saved by Teach process.

Devices:

Device	
X0	Function
X1	Start button. $\mathrm{X} 1=$ ON $=$ when the button Start is pressed.
X2	Manual mode
X3	Auto mode
M1	Start trigger in auto mode
T0	Timer. Time base: 100 ms
T1	Timer. Time base: 100 ms
D0	Data register. Saving the time value of stamping
Y0	Starting the punch when Teach is pressed
Y1	Starting the punch when Start is pressed in Auto mode

3. Timer Design Examples

Control Program:

Program Description:

- $\quad \mathrm{X} 2=\mathrm{ON}$ when the switch is turned to Manual mode. $\mathrm{XO}=\mathrm{ON}$ when Teach is pressed. In this case, coil Y 0 will be ON and start the stamping process. At the same time, TO will be executed and its present value will be sent to DO. Release the button Teach when the stamping process is completed. Y0 will be OFF, and the stamping process will be stopped.
- $\mathrm{X} 3=\mathrm{ON}$ when the switch is turned to Auto mode. Each time when X 1 is pressed, Y 1 will be ON and the stamping process will be executed. At the same time, T 1 will be activated to count until it achieves the target value (the saved value in T0). When the stamping time is achieved, the NC contact T1 and the rising edge trigger T1 will be activated and enable both M1 and Y1 to be OFF. The stamping process will thus be stopped. When the button Start is pressed again, M1 will be ON and repeats the same stamping process.
- The timer teaching function can also be performed by using API 64 TTMR instruction.

3.15 Auto Interruption Timer

Control Purpose:

- In PLC production lines, an operator should be in charge of packing products on two conveyor belts into 2 boxes. For ensuring that operators have sufficient time for packing, the program is designed to control two conveyor belts to be running alternatively: stops one conveyor after 30 sec running and then starts another conveyor for 30 sec running.

Devices:

Device	
T0	Function
M0	Controlling the trigger circuit
M1	Alternating the conveyor belt
Y0	Executing the production line 1
Y1	Executing the production line 2

Control Program:

3. Timer Design Examples

Program Description:

- This program uses the NC contact T0 as the executing condition of the timer T0. When T0 reaches its set value, 30 sec , it will be activated. The trigger circuit will be executed to change the state of M 1 . Production line 1 will then start working.
- After 30 sec counting, TO turns ON. The NC contact TO will be activated. At the same time, timer T0 will thus be OFF, which makes the NC contact TO to be OFF again. In the next scan period, because the NC contact TO is OFF, timer T0 will start counting. After 30 sec counting, T0 will be activated and so will the trigger circuit. In this case, M1 changes its state again. Production line 1 will be stopped and production line 2 will start working.
- By using the trigger circuit to activate Y 0 and Y 1 alternatively, the program makes the two production lines to convey products alternatively.

3. Timer Design Examples

3.16 Interesting Fountain

Control Purpose:

- Keeping the Running indicator in ON state when the Start button is pressed.
- Enabling the following devices to start in order after Running indicator is ON for 2 sec: middle sprayer light > middle sprayer valve > surrounding lights > surrounding sprayer valves. Each of them will be ON for 2 sec .

Devices:

Device	
X0	Function $=$ ON when the Start button of the fountain is pressed.
T0	2 sec timer. Time base: 100 ms
T1	2 sec timer. Time base: 100 ms
T2	2 sec timer. Time base: 100 ms
T3	2 sec timer. Time base: 100 ms
T4	2 sec timer. Time base: 100 ms
Y0	Running indicator of the fountain
Y1	Middle sprayer light
Y2	Middle sprayer valve
Y3	Surrounding lights
Y4	Surrounding sprayer valves

Control Program:

3. Timer Design Examples

Program Description:

- $\quad \mathrm{XO}=\mathrm{ON}$ when the button Start is pressed. Coil YO will be ON to activate the Running indicator. $\mathrm{YO}=\mathrm{ON}$ is used as the executing condition for the timer TO. After 2 sec counting down, TO goes from OFF to ON and executes [SET Y1] instruction. The middle sprayer light Y1 will be ON. The Running indicator YO will be kept in ON state through the whole working process.
- Likewise, $\mathrm{Y} 1=\mathrm{ON}$ is used as the executing condition for the timer T1, and so does Y2 $=\mathrm{ON}$ for the timer T 2 as well as $\mathrm{Y} 3=\mathrm{ON}$ for the timer T 3 . The executions will be assured in the following order: Y1, Y2, Y3, and Y4.
- The middle sprayer light, middle sprayer valve, surrounding lights, and surrounding sprayer valves need to be started in order. Therefore, when T1, T2 and T3 go from OFF to ON and set the next execution, they also reset the present execution. In addition, the NC contacts of $\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3$ and Y 4 are used for turning off timers $\mathrm{T} 0, \mathrm{~T} 1, \mathrm{~T} 2$ and T 3 .
- After the completion of the last execution, the rising edge switch T 4 will reset Y 4 and set Y 1 . The second round of fountain display will then be started again.
- When X0 = OFF, coil Y0 will be OFF to turn off the Running indicator. In addition, ZRST instruction will be executed at the same time. Y1, Y2, Y3 and $Y 4$ will be reset and all the valves and lights in the fountain will be stopped immediately.

3. Timer Design Examples

3.17 Traffic Lights Control

Control Purpose:

- Enabling the traffic lights to work by Start button X0 and to stop by Stop button X1.
- Setting the time of red light in East-West direction as 60 sec and North-South direction with a heavier traffic as 30 sec .
- The time of red light in East-West direction equals to the time of "green light + green light flashing + yellow light" in North-south direction, and vice versa.
- When yellow light is ON, cars and pedestrians should not cross the road, and yellow light will last for 5 sec for the crossing cars and pedestrians to pass safely.
- Timing diagram of traffic lights in East-West direction:

- Timing diagram of traffic lights in North-South direction:

3. Timer Design Examples

Devices:

Device	
X0	Start button
X1	Stop button
T0	60 sec timer. Time base: 100 ms
T1	20 sec timer. Time base: 100 ms
T2	5 sec timer. Time base: 100 ms
T10	50 sec timer. Time base: 100 ms
T11	5 sec timer. Time base: 100 ms
T12	5 sec timer. Time base: 100 ms
T13	30 sec timer. Time base: 100 ms
S0	Initial step
S10 ~ S13	Controlling the Traffic lights in East-West direction
S20 ~ S23	Controlling the Traffic lights in North-South direction
Y0	Red light in East-West direction
Y1	Green light in East-West direction
Y2	Yellow light in East-West direction
Y10	Red light in North-South direction
Y11	Green light in North-South direction
Y12	Yellow light in North-South direction

Control Program:

Red light in East-West direction is ON for 60 sec .

3. Timer Design Examples

Program Description:

- When Start is pressed, XO $=$ ON. PLS instruction will be executed, and MO will create a rising-edge pulse to set TO. The program will enter the step ladder process.
- When Stop is pressed, X1 = ON. PLS instruction will be executed, and M1 will create a rising-edge pulse to execute [ZRST S0 S127] instruction. All steps will be reset and all traffic

3. Timer Design Examples

lights will be OFF.

- This example is designed by the application of the simultaneous divergence sequence. The two sequences running simultaneously are East-West direction and North-South direction.
- When the red light of East-West direction is ON, the corresponding state of North-South direction will be the sequence of "Green ON", "Green Flashing" and "Yellow ON."
- When the East-West direction sequence is finished (the yellow light is OFF), the North-South direction sequence will be finished as well (the red light is OFF). The program will return to the initial step S 0 .
- When a step is transferred from one sequence to another sequence, the former sequence will be reset including the step and output point Y .
- The time of yellow light in East-West direction (Y2) is not controlled by a timer because when the red light in North-South direction is OFF, the yellow light in North-South direction will be reset at the same time. In this case, T13 is ON to redirect the program to initial step S0, and the outputs (Y 2 and Y 10) corresponding to S 13 and S 23 will thus be reset.

4. Index Registers E, F Design Examples

4.1 Summation of Continuous D Registers

Control Purpose:

- Summing up the values of D registers from $D 101$ to $D N$ (the number of N is determined by users) and storing the operation result in D100. If the result < K-32768, the borrow flag $=\mathrm{ON}$; if the result > K32767, the carry flag $=O N$.

Devices:

Device	Function
Y0	Borrow flag indicator. When the value in D100 < K-32768, Y0 $=$ ON
Y1	Carry flag indicator. When the value in D100 > K32767, Y1 $=$ ON
E1	Index register
D100	Storing the sum of all D registers
D500	Storing the executing times of FOR-NEXT loop

Control Program:

Program Description:

- The key of the program is to use the index register E1 together with FOR ~ NEXT loop to vary the addend D100E1. When E1 = K1, D100E1 represents D101; when E1 = K2, D100E1 represents D102. Also, when E1 = K10, D100E1 represents D110.
- The number of continuous D registers is determined by the execution times of FOR \sim NEXT loop which is set by D500. If the value in D500 ≤ 1, the loop will execute 1 time. If the value in D500 $=\mathrm{K} 10$, the loop will execute 10 times first and then execute the instructions behind

4. Index Registers E, F Design Examples

the loop.

- In the first FOR ~ NEXT loop, E1 = K1, so D100E1 represents D101. ADD instruction is executed, and the operation result of D100 plus D101 is stored in D100. Since the summand D100 = K0, the value stored in D100 equals to the value in D101. At the same time, INC instruction is executed to set E1 $=\mathrm{K} 2$.
- In the second FOR ~ NEXT loop, E1 = K2, so D100E1 represents D102. ADD instruction is executed, and the operation result of the values of D100 plus D102 is stored in D100. Since the summand D100 = D101, the value stored in D100 is the sum of the D101 and D102.
- According to the same process, by the $10^{\text {th }}$ FOR \sim NEXT loop the value in D100 will be the sum of D101, D102, D103, D104, D105, D106, D107, D108, D109 and D110.
- If the operation result < K-32768, M1021 will be ON to activate the output coil Y0. Borrow flag indicator will be ON. On the contrary, if the operation result > K32767, M1022 will be ON to activate output coil Y1. Carry flag indicator will be ON in this case.

4. Index Registers E, F Design Examples

4.2 Parameter Setting for Product Recipe

Control Purpose:

- For one product, there are 3 models which correspond to 3 sets of recipes. Each recipe includes 10 parameters. The program executes the set parameters according to the selected recipe switch.

Devices:

Device	
X0	Suitch of the first recipe
X1	Switch of the second recipe
X2	Switch of the third recipe
D500 ~ D509	Parameters of the first group
D510 ~ D519	Parameters of the second group
D520 ~ D529	Parameters of the third group
D100 ~ D109	The present parameters

Control Program:

4. Index Registers E, F Design Examples

Program Description:

- The key to this program is to use index register E1, F1 together with FOR ~NEXT loop to vary the numbers of D registers. In addition, the program transfers the parameters of the selected recipe to the register of present parameters
- When one recipe is selected, the corresponding switch $\mathrm{X} 0, \mathrm{X} 1$ or X 2 will be ON . According to the selected value of E1, the number of register D0E1 would be D500, D510 or D520. [RST M0] will be executed to reset F1, and FOR ~ NEXT will be executed. Because F1 is reset as K0, D100F1 represents D100 in this case.
- The FOR ~ NEXT loop is executed for 10 times in this program. If the first recipe is selected, D0E1 will vary from D500 to D509 and D100F1 will vary from D100 to D109.
- In addition, the value of D500 will be sent to D100 in the first FOR ~ NEXT loop. The value of D501 will be sent to D101 in the second loop. By the same process, the value of D509 will be sent to D109 in the $10^{\text {th }}$ loop.
- When the executing time reaches its set value, which means F1 $=$ K10, [SET M0] instruction will be executed. The Normally Closed contact M0 will be activated to stop FOR ~ NEXT loops.
- The program performs the transferring of 10 parameters of each recipe. The numbers of parameters can easily be changed by setting the executing times of FOR ~ NEXT loop. Besides, if it requires adding more recipes, the program can also meet this requirement by adding one more MOV instruction as [MOV K530 E1].

4. Index Registers E, F Design Examples

4.3 Controlling Voltage Output of 2 DVP-04DA by 8 VRs (Variable Resistors)

Control Purpose:

- Controlling the voltage output of 2 DVP-04DA to vary from $0 \sim 10 \mathrm{~V}$ by adjusting 8 VRs on DVP-EH series PLC (2 VRs on the EH MPU and 6 VRs on DVP-F6VR extension unit).

Devices:

Device	
X0	Start Switch of reading VR volume
X1	Writing in the value of the first DVP04DA
X2	Writing in the value of the second DVP04DA
E0	Index register

Control Program:

Program Description:

- The program uses index register E0 and FOR ~NEXT loop to specify the No. of VR as well as the No. of D registers which store the read out value of VR.
- In FOR ~NEXT loop, E0 will change from 0 to 7 because of [INC E0] instruction. In this case, K0@E0 will change from K0 to K7 and DOE0 will change from D0 to D7. Therefore, the values of 8 VRs will be read out in order as below, VR0 \rightarrow D0, VR1 $\rightarrow \mathrm{D} 1 \ldots$ VR7 $\rightarrow \mathrm{D} 7$.
- The value range of the VR is K0 $\sim K 255$, and the voltage range of DVP04DA is $0 \sim 10 \mathrm{~V}$ corresponding to $\mathrm{KO} \sim \mathrm{K} 4000$. Therefore, the program is designed to convert the VR value K0 ~ K255 into the DVP04DA value K0 ~ K4000. Through this process, the target of controlling $0 \sim 10 \mathrm{~V}$ voltage output by adjusting the VR value can be achieved.
- The value which is converted into K0 ~ K4000 will be sent to D200, D210, D220 ... D270, and will be transferred to DVP04DA by TO instruction as the voltage outputs of the corresponding channels.
- For the application of API85 VRRD instruction and API79 TO instruction, please refer to DVP-PLC Application Manual - programming.

MEMO

5. Loop Instruction Design Examples

5.1 Recipe Setting by CJ Instruction

Control Purpose:

- Controlling 3 stroke distances of Delta ASDA servo by sending pulses from Delta DVP12SC PLC. Users can choose the adequate stroke distance to meet the working requirement by pressing 3 individual switches.

Devices:

Device	Function
X 1	$\mathrm{X} 1=$ ON when the switch Stroke 1 is pressed.
X 2	$\mathrm{X} 2=$ ON when the switch Stroke 2 is pressed.
X 3	$\mathrm{X} 3=$ ON when the switch Stroke 3 is pressed.
X 4	$\mathrm{X} 4=$ ON when the servo locating switch is pressed.
Y 0	Pulse direction control
Y 10	Pulse output point

Control Program:

5. Loop Instruction Design Examples

Program Description:

- When X1 = ON, X2 = OFF, X3 = OFF, the program will jump from [CJ P1] to P1 and store the constant K10000 in D0, which means the first stroke distance is selected. At the same time, the program will jump to address P4 and get ready to output pulses.
- When $\mathrm{X} 2=\mathrm{ON}, \mathrm{X} 1=\mathrm{OFF}, \mathrm{X} 3=\mathrm{OFF}$, the program will jump from [CJ P2] to P2 and store the constant K20000 in D0, which means the second stroke distance is selected. At the same time, the program will jump to address P4 and get ready to output pulses.
- When X3 = ON, X1 = OFF, X2 = OFF, the program will jump from [CJ P3] to P3 and store the constant K30000 in D0, which means the third stroke distance is selected. At the same time, the program will jump to address P4 and get ready to output pulses.
- When X1 = OFF, X2 = OFF, X3 = OFF, [CJ p4] instruction will be executed. The program will jump to pointer P 4 directly and get ready to output pulses.
- When $\mathrm{X} 4=\mathrm{ON},[\mathrm{DDRVI}$ D0 K10000 Y10 Y0] instruction will be executed; that is, Y 10 will output a certain number of pulses with frequency of 100 KHz (the content in D0 is the number of the pulses), and Y 0 will control the pulse direction. Since the operating distance of the servo motor is proportional to the number of the pulses, the object of controlling servo operating distance can be achieved by setting PLC output pulses.

5.2 Reservoir Level Control

Control Purpose:

- Enabling the abnormal situation alarm and draining water from the reservoir when the level is above the upper bound.
- Enabling the abnormal situation alarm and pouring water into the reservoir when the level is below the lower bound.
- Enabling the mechanical failure alarm if the upper bound sensor XO is still ON after draining water for 10 minutes.
- Enabling the mechanical failure alarm if the lower bound sensor X1 is still ON after pouring water for 5 minutes.
- Resetting all the alarms and valves when the level is in normal position.

Devices:

Device	Function
X0	X0 turns ON when the level reaches the upper bound.
X 1	X1 turns ON when the level reaches the lower bound.
Y0	Draining valve
Y1	Pouring valve
Y10	Abnormal situation alarm
Y11	Mechanical failure alarm

Control Program:

5. Loop Instruction Design Examples

Program Description:

- When the level is above the upper bound, XO will be ON to execute [CALL P0] instruction. The abnormal situation alarm Y10 and the draining valve Y0 will start working until the level is below the upper bound.
- When the level is below the lower bound, X 1 will be ON to execute [CALL P10] instruction. The abnormal situation alarm Y10 and the pouring valve Y1 will start working until the level is above the lower bound.
- CALL P20 subroutine is nested both in P0 and P10 subroutines. If the upper bound sensor is still on after draining water for 10 minutes, subroutine P 20 will be executed. Coil Y 11 will be ON and the mechanical failure alarm will be enabled.
- Likewise, if the lower bound sensor is still ON after pouring water for 5 minutes, subroutine P20 will be executed. Coil Y 11 will be ON and the mechanical failure alarm will be enabled.
- If the level is at normal position, X0 = OFF, X1 = OFF, ZRST instruction will be executed. Y0, Y1, Y10, Y11, T0, and T1 will be reset. All valves as well as alarms will be disabled.

5. Loop Instruction Design Examples

5.3 Fire Alarm in the Office (Interruption Application)

Control Purpose:

- Starting the alarm and sprayer when the temperature alarm detects high temperature.
- Stopping the alarm and sprayer when the alarm reset button is pressed.

Devices:

Device	Function
$\mathrm{X0}$	Temperature alarm. $\mathrm{X0}=\mathrm{ON}$ when the temperature is too high.
X 1	Alarm reset button. $\mathrm{X} 1=\mathrm{ON}$ when the button is pressed.
Y 0	Sprayer
Y 1	Fire alarm

Control Program:

Program Description:

- In the program, the interruption pointers I001, I101 correspond to the external input points $\mathrm{X0}, \mathrm{X} 1$. When $\mathrm{X0}, \mathrm{X} 1$ is ON , the subroutines corresponding to I001, I101 will be executed.
- If the temperature in the office is normal, $\mathrm{XO}=\mathrm{OFF}$. The temperature alarm will not perform any action. No interruption signal is generated, and no interruption subroutine will be executed in this case.
- If the temperature in the office is too high, $\mathrm{XO}=\mathrm{ON}$, the temperature alarm will be enabled. The PLC will stop the main program to execute the interruption subroutine I001. In this case, sprayer valve Y 0 and alarm Y 1 will be enabled. After the execution of IO01, the program will return to the main program and resume execution from the interruption point.

5. Loop Instruction Design Examples

- Press the alarm reset button if the alarm situation is cleared. $\mathrm{X} 1=\mathrm{ON}$, the PLC will stop the main program to execute the interruption subroutine I101. In this case, sprayer Y0 and alarm Y1 will be shut down. After the execution of I101, the program will return to the main program and resume execution from the interruption point.

5. Loop Instruction Design Examples

5.4 Auto Lock up system in the Supermarket (FOR ~ NEXT)

Control Purpose:

- Once fire or robbery happened in the supermarket, locking up all cash drawers until the alarm situation is cleared.

Devices:

Device	
X0	X0 $=$ ON when the alarm is activated.
D0	The number of cash drawers
D10	Start address of destination register

Control Program:

5. Loop Instruction Design Examples

Program Description:

- The execution times of FOR~NEXT loop which decide the number of controlled cash counters can be controlled by the value in D0. Each cash counter has 16 drawers. In this program, D0 $=\mathrm{K} 3$, which means it can control 48 cash drawers in 3 counters.
- F10 = K0, D10F1 represents D10; F10 = K1, D10F1 represents D11; F0 = K2, D10F1 represents D12; F0=K3, D10F1 represents D13.
- When the alarm rings, X0 $=$ ON. FOR \sim NEXT loop will be executed for 3 times and HFFFF will be sent to D10 ~ D12 in order. After the execution, the value in D10 ~ D12 will be sent to the external outputs. All the outputs Y will be set to be ON in this case. The system will lock up all the cash drawers.
- When the alarm situation is cleared, XO = OFF. FOR ~NEXT loop will be executed for 3 times and H 0 will be sent to D10 ~ D12 in order. After the execution, the value in D10 ~ D12 will be sent to the external outputs. All the outputs Y will be reset to be OFF in this case. The system will unlock all the cash drawers.
- In this program, the index register F1 is used for storing single value in a data stack (series D registers). According to different application situations, users can make use of the data stack for controlling timers or counters.

6. Data Transmission and Comparison Design Examples

6.1 CMP - Material Mixing Machine

Control Purpose:

- There are materials A and B in the mixing machine. Enabling the indicator(Y0) when the Power On switch is pressed. Controlling the material A outlet $(\mathrm{Y} 1)$ to start feeding and starting the agitator Y 3 by pressing the button Process(X1). When material A feeding process reaches the set time D0, enabling the material B outlet(Y2) to start feeding while the agitator keeps working. Stopping all processes when the whole mixing time(D1) is achieved.

Devices:

Device	
X 0	$\mathrm{X} 0=$ ON when the Power On switch is pressed.
X 1	$\mathrm{X} 1=$ ON when the button Process is pressed.
Y0	Power On Indicator
Y 1	Material A outlet
Y 2	Material B outlet
Y3	Agitator
D0	Feeding time of material A
D1	Total feeding time of material A and B

Control Program:

6. Data Transmission and Comparison Design Examples

Program Description:

- When the Power On switch is pressed, $\mathrm{XO}=\mathrm{ON}$. The Power On indicator Y 0 will be ON .
- When Process button is pressed, $\mathrm{X} 1=\mathrm{ON}$. SET Y3 instruction will be executed so as to execute TMR instruction. Timer T0 will be activated in this case.
- At the same time, CMP instruction will also be executed. When the PV(present value) in T0 is smaller than the SV (set value) in $\mathrm{D} 0, \mathrm{M} 0=\mathrm{ON}$. Therefore, M 0 will be ON to turn on coil Y 1 . Material A feeding process will start. However, when the PV in T0 \geq the SV in D0, M1 and M 2 will be ON but M0 will be OFF. Y2 will be ON in this case and the material B feeding process will start while process A is stopped.
- When the PV in T0 reaches the SV in D1, the NO(Normally Open) contact T0 will be ON to execute ZRST and RST instructions. Y1, Y2, Y3 and T0 will be reset, and the agitator will stop until the Process button is pressed again.

6. Data Transmission and Comparison Design Examples

6.2 ZCP - Water Level Alarm Control

Control Purpose:

- Controlling the water level in water tower by using analogue level measuring instrument.

When the water is at normal level, enable the normal level indicator. When there is only 25% water volume in the water tower, start the feed water valve. When the level reaches the upper bound, enable the alarm and stop the feed water valve.

Devices:

Device	Function
Y0	Feed water valve. (The lower bound value $=$ K1000 $)$
Y1	Normal level indicator
Y2	Upper limit alarm. (The upper bound value $=$ K4000)
D0	Data register of the measuring value $(\mathrm{KO} \sim \mathrm{K} 4000)$

Control Program:

Program Description:

- The water level is measured by analogue level measuring instrument(Voltage output of $0 \sim 10 \mathrm{~V}$). Delta DVP04AD extension module converts the measured value into the value of K0~K4000 and judges the water level by the value saved in D0
- When the value in $\mathrm{D} 0<\mathrm{K} 1000$ (25% water volume), $\mathrm{MO}=\mathrm{ON}$ to set the feed water valve Y 0 .
- When the value is between K1000~K4000, M1 = ON to set the normal level indicator Y1.
- When the value $>\mathrm{K} 4000$ (the level reaches the upper bound), $\mathrm{M} 2=\mathrm{ON}$ to set the upper limit alarm Y2. At the same time, Y0 will be reset, and the feed water valve will be shut down.
- For the application of API78 FROM instruction, please refer to DVP-PLC Application Manual - Programming.

6. Data Transmission and Comparison Design Examples

6.3 BMOV - Multiple History Data Backup

Control Purpose:

- Recording the data of the DUT(Device Under Test) in register D0~D99 on the experimental test bed first, then backup the data in other registers every 30 min by DVP-PLC so that registers D0~D99 can compile new data again. The test cycle of DUT is 2 hours.

Devices:

Device	Function
X0	X0 turns ON when START is pressed.
X1	X1 turns ON when RETEST is pressed.
X2	X2 turns ON when STOP is pressed.
D0~D99	Data compiling
D100~D499	Data backup

Control Program:

Program Description:

- When $\mathrm{XO}=\mathrm{ON}, \mathrm{TO}$ starts to count up, and the NO contact TO will be ON every 30 minutes.
- In the program, counter CO is used for counting the ON times of NO contact TO . When $\mathrm{CO}=$ 1, the data in D0~D99 will be sent to D100~D199; when C0 $=2$, the data in D0~D99 will be sent to D200~D299; when C0 $=3$, the data in D0~D99 will be sent to D300~D399; when C0 = 4, the data in D0~D99 will be sent to D400~D499 and the test process ends here.
- If the operator needs to retest the DUT, just activate X1 one more time.
- When X2 $=$ ON, the test will be stopped. In this case, no data compiling will be done on DUT by PLC, and Counter C0 will be cleared as well.

6. Data Transmission and Comparison Design Examples

6.4 FMOV - Single Data Broadcasting

Control Purpose:

- Setting frequency of 4 ACMDs (AC Motor Drive) by selecting on the rotary switch.

In some applications users may need to set the frequency on several ACMDs to be the same when a Delta PLC is connected through RS485 communication format. The control purpose can be achieved by controlling the value in D10~D13 which corresponds to 4 frequency of four ACMDs, and then adjusting the frequency by one external rotary switch.

Devices:

Device	
X 1	$\mathrm{X} 1=\mathrm{ON}$ when the switch is turned to " OHz ".
X 2	$\mathrm{X} 2=\mathrm{ON}$ when the switch is turned to " 30 Hz ".
X 3	$\mathrm{X} 3=\mathrm{ON}$ when the switch is turned to " 40 Hz ".
X 4	$\mathrm{X} 4=\mathrm{ON}$ when the switch is turned to " 50 Hz ".
D 10	Output frequency of 1 \# AC motor drive
D 11	Output frequency of 2\# AC motor drive
D 12	Output frequency of 3\# AC motor drive
D 13	Output frequency of 4 \# AC motor drive

6. Data Transmission and Comparison Design Examples

Control Program:

program Description:

- When $\mathrm{X} 1=\mathrm{ON}, \mathrm{K} 0$ will be sent to D10~D13. The output frequency of ACMD will be 0 Hz .
- When $\mathrm{X} 2=\mathrm{ON}, \mathrm{K} 3000$ will be sent to D10~D13. The output frequency of ACMD will be 30 Hz .
- When $\mathrm{X} 3=\mathrm{ON}, \mathrm{K} 4000$ will be sent to D10~D13. The output frequency of ACMD will be 40 Hz .
- When $\mathrm{X} 4=\mathrm{ON}, \mathrm{K} 5000$ will be sent to D10~D13. The output frequency of ACMD will be 50 Hz .
- The program applies MODWR instructions to set output frequency of ACMDs through RS485 communication. Please note that the 4 MODWR instructions cannot be executed at the same time due to a possible conflict in communication. For examples of multiple communication, please refer to Chapter 12 - Communication Design Examples.

6.5 CML - Color Lights Flashing

Control Purpose:

- Turning on the even-numbered lights and odd-numbered lights alternately for 1 sec when the switch is turned ON.
- Turning off all color lights when the switch is turned off.

Devices:

Device	Function
X 1	Flashing control switch. X1 = ON when the switch is turned to ON.
M1013	1s clock pulse, 0.5 s ON $/ 0.5 \mathrm{~s}$ OFF
Y0~Y17	16 color lights

Control Program:

Program Description:

- When the switch is turned ON, K4Y0 = H5555 and the state of Y17~Y0 will be "0101 0101 0101 0101," which means the even-numbered lights will be ON. When M1013 = On, CMLP instruction will be executed to reverse the state of K4Y0. Y17~Y0 will be "1010 10101010 1010," which means the odd-numbered lights will be ON. The state will last for 1 sec .
- When M1013 is ON again, CMLP instruction will be executed and the state of K4Y0 will be reversed again. In this case, the even-numbered lights will be ON.
- Every time when M1013 is ON, the state of Y0~Y17 will be reversed and lasts for 1 sec . The lights will flash alternatively as this cycle.

6. Data Transmission and Comparison Design Examples

6.6 XCH - Exchanging the Upper and Lower 8 bits in a Register

Control Purpose:

- Exchanging the data NB(Nibble)0 with NB1, NB2 with NB3 in a register every 1 sec.

The data length of D register is Word (16 bits), and a Word is made up of 4 Nibbles.

Devices:

Device	
T0	Function
D0	Data register
Y0~Y17	Storing 4 nibbles

Control Program:

Program Description:

- First, the program will store the 16 bits (4 Nibbles) data in D0 to Y0~Y17. After 1 sec, the NO contact TO will be activated to execute XCHP instruction. The data in K1Y0 will be exchanged with K1Y4 and so will K1Y10 with K1Y14. Then, these data will be sent to D0. Finally, The data exchange between NB0/NB1 and NB2/NB3 is completed.

6.7 DIP Switch Input and 7-segment Display Output

Equivalent circuit of DVP-F8ID extension card

Control Purpose:

- Setting the set value of counter C0 in the range of K0~K99 by DVP-F8ID extension card and displaying the PV (K0~K99) by 7-segment decoding display.

Devices:

Device	
X0	Sunction
M1104~M1111	Mapping ON/OFF state of the external 8 switches
D0	Set value of C0
Y0~Y7	Displaying the PV of C0
Y10	Indicator. Y10 $=$ ON when the counter reached its set value

Control Program:

Program Description:

- When PLC runs, ON/OFF state of the external 8 DIP switches will be mapped to PLC internal auxiliary relay M1104~M1111 by DVP-F8ID extension card. 8 bits switch can perform 2 digit number input by instructions.
- When the program is executed, $\mathrm{M} 1000=\mathrm{ON}$, and the set value of counter in DVP-F8ID extension card will be stored in D0.
- When the counter is OFF, X0 = OFF, and the 2 digit number display will show the set value of $C 0$ because of the execution of BCD instruction.
- When the counter is $\mathrm{ON}, \mathrm{XO}=\mathrm{ON}$. CO will start counting and BCD instruction will be executed. The 2 digit number display will show the PV of CO .
- If the 2 digit number display shows "34" from left to right, it means the state of DI7~DIO on DVP-F8ID extension card is "0011 0100 ."
- When C0 reaches its set value D0, the NO contact C 0 will be activated and Y 10 will be ON .

7.1 Accurate Pipe Flow Measurement

Control Purpose:

- Measuring the flow to an accuracy of 2 decimal places.

In this example, the diameter of the pipe is measured by $m m$, the flow rate is measured by dm / s, and the flow is measured by $\mathrm{cm}^{3} / \mathrm{s}$. The cross-sectional area of the pipe $=\pi r^{2}=\pi(\mathrm{d} / 2)^{2}$ and the flow $=$ cross-sectional area \times flow rate .

Devices:

Device	
X0	Starting the measurement
D0	Diameter of the pipe (unit: mm ; set value: 10 mm)
D6	Operation result of the cross-sectional area (unit: mm^{2})
D10	Flow rate (unit: dm/s; set value: $25 \mathrm{dm} / \mathrm{s}$)
D20	Operation result of the flow (unit: $\mathrm{mm}^{3} / \mathrm{s}$)
D30	Operation result of the flow (unit: $\mathrm{cm}^{3} / \mathrm{s}$)

Control Program:

7. Elementary Arithmetic Operations Design Examples

Program Description:

- The floating point operation is usually applied to perform decimal calculation. However, it needs to be converted and is more complicated. Therefore, we use elementary arithmetic operation instructions to perform decimal calculation in this example.
- The units of $m m, c m$ and $d m$ are used in the program. For calculation requirement, the program sets these units into mm^{3} and then converts them into cm^{3}.
- $\quad \pi(\pi \approx 3.14)$ is required when calculating the cross-sectional area of the pipe. In order to get the calculation accuracy of 2 decimal places, the program increases $\pi 100$ times to be K314 instead of increasing the unit $\mathrm{dm} / \mathrm{s} 100$ times to be mm / s.
- In the end, the program divides the value in D20 (unit: $\mathrm{mm}^{3} / \mathrm{s}$) with 1000 so as to convert the unit into $\mathrm{cm}^{3} / \mathrm{s}$. $\left(1 \mathrm{~cm}^{3}=1 \mathrm{ml}, 1 /=1000 \mathrm{ml}=1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}\right)$
- .Assume the pipe diameter D0 is 10 mm and the flow rate D 10 is $25 \mathrm{dm} / \mathrm{s}$, the operation result of the total flow will be $196 \mathrm{~cm}^{3} / \mathrm{s}$.

7.2 INC/DEC - Fine Tuning by JOG Control

Control Purpose:

- Controlling the fine tuning by JOG left and JOG right switches.

In this assumed position control system, the 1 mm fine tuning can be performed by 100 pulses sent by PLC. When X0 is pressed, JOG left for 1 mm ; when X1 is pressed, JOG right for 1 mm.

Devices:

Device	
X0	JOG left switch
X1	JOG right switch
D0	Target position
D2	The number of pulses for target position
Y0	Pulse output point
Y5	Direction control signal output

Control Program:

Program Description:

- When JOG left switch X0 is pressed, DINC instruction will execute to increase the value in D0; when JOG right switch X 1 is pressed, DDEC instruction will execute to decrease the value in DO .
- Assume the initial value of D0 and D4 is K0. When JOG left switch is pressed, D0 will be K1

7. Elementary Arithmetic Operations Design Examples

and then be multiplied with 100 as the pulse number. The pulse number will be stored in D2 then transferred to D4 as the target value of DDRVA instruction (absolute position), and M1 will be ON to execute DDRVA instruction.

- According to the execution result of DDRVA, Y0 will output 100 pulses with frequency 50 kHz and the system will JOG to the target position (D4 = D2 $=$ K100) from the initial position (D4 $=K 0$), which means the system will JOG left for 1 mm .
- If X0 is pressed again, D2 will be K200 which is different to the present value in D4 (K100). The value in D2 (K200) will be sent to D4 as the target value of the absolute position. M1 will be ON to execute DDRVA instruction. The system will JOG to the target position (D4 = D2 = K200) from the last position ($\mathrm{D} 4=\mathrm{K} 100$), which means the system will JOG left for another 1 mm.
- Likewise, the process of JOG right is similar to that of JOG left. The system will JOG right for 1 mm every time the JOG right switch is pressed,

7.3 NEG - Displacement Reverse Control

Control Purpose:

- The symmetric point in this program is the Origin (D200, D201 = K0). Controlling the displacement to shift between the left end and the right end every time X 1 is pressed.

Devices:

Device	
X1	Runction
Y0	Pulse output point
Y5	Reverse direction control
D200, D201	Storing the target value of the absolute position

Control Program:

Program Description:

- Assume the 32-bit initial value of D200 and D201 is K50000. When the Reverse START button X1 is pressed, the content in D200 and D201 will become K-50000.
- In addition, M0 will be ON to execute DDRVA instruction. The program will shift the present location K50000 to the target position K-50000 with frequency 5 KHZ (K5000). When the target position is reached, M1029 $=\mathrm{ON}$ and M 0 will be reset. Y 0 will stop pulse sending.
- When X1 is pressed again, the value in D200 and D201 will change from K-50000 to K50000. M0 will be ON to execute the displacement reverse control until the absolute position is reached.
- As the actions above, the program will shift from the present location to the other side of the symmetric point Origin every time when X1 is pressed.

MEMO

8.1 ROL/ROR - Neon Lamp Design

Control Purpose:

- Enabling the 16 neon lamps in the order: Y0~Y7, Y10~Y17 when Rotation Right button is pressed. Each lamp turns on for 200ms.
- Enabling the 16 neon lamps in the order: Y17~Y10, Y7~Y0 when Rotation Left button is pressed. Each lamp turns on for 200 ms .
- The action of Reset is unnecessary when switching between Rotation Right and Rotation Left.
- When RESET is pressed, turn off all working neon lamps.

Devices:

Device	Function
$\mathrm{X0}$	Rotation Right button. $\mathrm{X0}=\mathrm{ON}$ when the button is pressed.
X 1	Rotation Left button. $\mathrm{X} 1=$ ON when the button is pressed.
X 2	X 2 turns ON when RESET is pressed.
T0/T1	200ms timer. Time base: 100 ms.
Y0~Y17	16 neon lamps

Control Program:

8. Rotation and Shift Design Examples

Program Description:

- When Rotation Right is pressed, $\mathrm{X0}=\mathrm{ON}$ to execute ZRST and SET instructions. Y0~Y17 and M10~M11 will be reset first, then Y0 and M10 will be ON. TMR instruction will be executed. After 200 ms , the contact TO will be activated once to execute ROL instruction. The ON state of YO will be shifted to Y 1 , and TO will then be reset.
- In the next scan cycle, timer T0 starts counting again. After 200ms, ROL instruction will be executed one more time and the $O N$ state of $Y 1$ will be shifted to $Y 2$. By the same process, Y0~Y17 will be ON for 200ms in order.
- The rotation left process is similar to the above process. However, the rotation right program uses ROR instruction to enable the lamps in the order: Y17~Y10, Y7~Y0
- When RESET is pressed, $\mathrm{X} 2=\mathrm{ON}$ to reset $\mathrm{Y} 0 \sim \mathrm{Y} 17$ and $\mathrm{M} 10 \sim \mathrm{M} 11$. All neon lamps will be OFF. (Note: in this program, the purpose of placing ZRST instruction after the rising-edge contacts of X 0 and X 1 is to ensure that all the neon lamps start flashing from Y 0 or Y 17 .)

8. Rotation and Shift Design Examples

8.2 SFTL - Defective Product Detect

Photoelectric sensor X0
for detecting defective product

Recycle box for defective product

Control Purpose:

- Detecting the defective products (taller than normal dimension) on the conveyor belt by photoelectric sensor and pushing them into the recycle box at the $5^{\text {th }}$ position.

The pushing pole will be reset when the falling of defective product is detected. When errors occur, the disorder memory can be cleared and the system can be restarted by pressing RESET.

Devices:

Device	Function
X0	Photoelectric sensor for detecting defective products
X4	Photoelectric sensor for monitoring the cam
X5	Photoelectric sensor for detecting the falling of defective products
X6	RESET
Y0	Electromagnetic valve pushing pole

Control Program:

8. Rotation and Shift Design Examples

Program Description:

- Every time the cam rotates once, the product will be moved from one position to another position. X 4 will be activated to execute SFTL instruction once. The content in M0~M4 will be shift to left for one bit and the state of XO will be sent to MO.
- When $\mathrm{XO}=\mathrm{ON}$ (defective products detected), the value " 1 " will be sent to M0 and achieve the $5^{\text {th }}$ position after 4 times of shift. In this case, M4 $=\mathrm{ON}$ and the electromagnetic valve Y 0 will be ON to push the defective product into the recycle box.
- When the falling of the defective product is detected, X 5 will be activated to execute [RST Y0] and [RST M4] instructions. Y0 and M4 will be reset. The electromagnetic valve will be OFF till next defective product is detected.
- When RESET is pressed, X6 will be activated to reset M0~M4, so as to ensure that the system restart the detecting process when the memory which records defective products is in disorder.

8. Rotation and Shift Design Examples

8.3 WSFL - Automatic Sorting Mixed Products

RESET

Photoelectric sensor X6 for monitoring the cam

Container A

Container B

Electromagnetic valve C

Container C

Control Purpose:

- Sorting different products on the conveyor belt and pushing each product into its corresponding container.

1. There are three kinds of products, A, B and C and 6 positions for each product are set on the conveyor. Products will move forward for one position when the cam rotates once.
2. Sorting each product by product ID (Identification) sensors. Product A will be pushed in container A at position 2. And so forth, product B in container B at position 4; product C in container C at position 6.
3. When the product falling is confirmed by sensors, the electromagnetic valve will be reset. When RESET is pressed, all memory will be cleared and the system will restart the identifying and sorting process.

Devices:

Device	Function
X0	Product A ID sensor. X0 = ON when Product A is detected.
X1	Product B ID sensor. X1 = ON when Product B is detected.
X2	Product C ID sensor. X2 = ON when Product C is detected.
X3	Product A falling sensor. X3 = ON when Product A falls in container A
X4	Product B falling sensor. X4 = ON when Product B falls in container B
X5	Product C falling sensor. X5 = ON when Product C falls in container C
X6	Sensor for the cam. X6 activates 1 time when the cam rotates once.
X7	RESET. X7 = ON when the button is pressed
Y0	Electromagnetic valve A
Y1	Electromagnetic valve B
Y2	Electromagnetic valve C

8. Rotation and Shift Design Examples

Control Program:

Program Description:

- When product A is identified on the conveyor belt, X0 activates for one time to execute MOVP K1 D0 instruction. The value in D0 $=$ K1. Likewise, when product B and C is on the conveyor, the value in D0 will be K2 and K3.
- Products will move forward for one position when the cam rotates once. X6 activated one time to execute WSFL instruction. Data in D100~D105 will shift left for one register. At the
same time, CMP instructions will be executed to confirm product A at position 2 (D101), product B at position 4 (D103) and product C at position 6 (D105). After each CMP instruction, RST instruction will be executed to clear D0.
- If product A , B or C is confirmed at position 2, 4 or 6 , the corresponding M11, M21 or M31 will be $O N$ to enable electromagnetic valve A, B or C to push the products in the containers.
- When the falling of each product is detected by sensors, $\mathrm{X} 3, \mathrm{X} 4$ or X 5 will be ON to reset electromagnetic valve A, B or C.
- When RESET is pressed, $\mathrm{X7}=\mathrm{ON}$ to execute ZRST instruction. The value in D100~D105 will be 0 , which means all data memory will be cleared.

8. Rotation and Shift Design Examples

8.4 SFWR/SFRD - Room Service Call Control

Service Counter

Rooms

Control Purpose:

- Recording the calling room numbers and the amount of calling then checking the numbers in first-in first-out principle, which means the room first called will be first served.
- Clearing all the data memory when RESET is pressed.

The amount of calling will be increased by the pressing times of call buttons, and decreased by the checking times of CHECK button. If all room numbers are checked, the displayed amount of calling would be 0 .

Devices:

Device	Function
X0	Call button of Room 101. $\mathrm{X0}=\mathrm{ON}$ when the button is pressed
X1	Call button of Room 102. $\mathrm{X} 1=$ ON when the button is pressed
X2	Call button of Room 103. $\mathrm{X} 2=$ ON when the button is pressed
X3	Call button of Room 104. $\mathrm{X} 3=$ ON when the button is pressed
X4	Call button of Room 105. $\mathrm{X} 4=$ ON when the button is pressed
X5	Check button. $\mathrm{X} 5=$ ON when CHECK is pressed.
X6	Reset button. $\mathrm{X} 6=$ ON when RESET is pressed.
D0	Displaying the amount of calls
D1 ~ D5	Storing the room numbers under check
D10	Storing the input room numbers temporarily
D11	Displaying the room number (First-in first-out)

Control Program:

Program Description:

- By using API38 SFWR instruction together with API39 SFRD instruction, the program performs data stack writing and reading control in FIFO(first in, first out) principle. In this example, the room number first called will be first checked.
- When Call buttons are pressed, the numbers of the five rooms will be stored in D10 first and then sent to data stack D1~D5 according to the time order.
- When CHECK is pressed, the room number first called will be read to D11 first and the amount of calling will be decreased corresponding to D0. In addition, by using Delta TP04, the system can easily monitor the value of D0 (Amount of calling) and D11 (Displaying Room No.)
- The program clears D0~D5 and D11 by ZRST and RST instructions, which means Amount of calling and Room number displayed on TP04 will be 0 .

8. Rotation and Shift Design Examples

MEMO

9. Data Processing Design Examples

9.1 ENCO/DECO - Encoding and Decoding

Control Purpose:

- Monitoring the entering products from sub-production lines No.0~7 to main production line by the value in D0 and disabling certain sub-production lines by setting the value in D10 as K0~K7.

Devices:

Device	Function
X0 \sim X7	Product detecting sensor to identify each entering product.
Y0~Y7	Disabling the corresponding sub production line (No.0~7)
M10	Executing ENCO instruction
M11	Executing DECO instruction
D0	Indicating the entering product from sub-production line No.0~7
D10	Disabling the specified sub-production line

9. Data Processing Design Examples

Control Program:

Program Description:

- When M10 = ON, ENCO instruction will be executed. Any product entering main production line will be encoded with its sub-production line number, and the result will be saved in D0. By monitoring the value in DO, the operator can identify the type of the entering product.
- When M11 = ON, DECO instruction will be executed to decode the specified value in D10 into Y0~Y7 so as to disable the corresponding sub-production line. For example, when D10 $=K 5$, the decoding result will be $\mathrm{Y} 5=\mathrm{ON}$. In this case, No. 5 sub-production line will be disabled. When M11 = OFF, ZRST instruction will be executed and Y0~Y7 will be OFF. All sub-production lines will operate normally.
- If the set value in D10 is out of the range between K0~K7, HFFFF will be written in D10, so as to prevent the production line interruption due to other written value in D10.

9. Data Processing Design Examples

9.2 SUM/BON - Checking and Counting the Number of "1"

Control Purpose:

When $\mathrm{XO}=\mathrm{ON}$,

- Executing SUM instruction to count active bits among Y0~Y17 and to store the value in D0.
- Executing BON instruction to check the ON/OFF state of LSB (Least Significant Bit) and MSB (Most Significant Bit) and to store the result in M0 and M1
- Indicating the value in DO and the state of MO and M1.

Devices:

Device	
X0	Executing SUM and BON instructions
Y0~Y17	Device for checking and counting
D0	Storing the sum of active bits among Y0~Y17
M0	Storing the ON/OFF state of LSB
M1	Storing the ON/OFF state of MSB

Control Program:

Program Description:

- When $\mathrm{X0}=\mathrm{ON}$, the program will count the active bits (numbers of " 1 ") among Y0~Y10 and check the active state (" 1 ") of the LSB and MSB.

9. Data Processing Design Examples

9.3 MEAN/SQR - Mean Value and Square Root

Control Purpose:

- When $\mathrm{X0}=\mathrm{ON}$, calculate the mean of values in D0~D9 and store the value in D200; calculate the square root of D200 and save the value in D250.
- When $\mathrm{X} 1=\mathrm{ON}$, calculate the mean of values in D100~D163, store the value in D300; calculate the square root of D300 and save the value in D350.

Devices:

Device	Function
X0	Executing MEAN/SQR instruction to calculate 10 continuous data
X1	Executing MEAN/SQR instruction to calculate 64 continuous data
D0~D9	Storing historical data
D200	Storing mean value
D250	Storing square root of the mean value
D100~D163	Storing historical data
D300	Storing mean value
D350	Storing square root of the mean value

Control Program:

Program Description:

- If the data number falls out of the range between 1~64 in MEAN instruction, or if the SQR instruction specifies a negative value, PLC will regard it as an "instruction operation error."

9. Data Processing Design Examples

9.4 MEMR/MEMW - File Register Access

Control Purpose:

- Sending 50 data of No.0~No. 49 file registers to D4000~D4049 when PLC is power up.
- Writing in 100 data of D2000~D2099 into No.0~No. 99 file registers when X0 $=$ ON.
- Reading out 100 data in No.0~No. 99 file registers to D3000~D3099 when X1 $=$ ON.

Devices:

Device		Function
$\times 0$	Write data into file registers	
$\times 1$	Read data in file registers	

Control Program:

9. Data Processing Design Examples

Program Description:

- The memory storing format of PLC internal file registers, Word, is the same as data registers. However, data in file registers can not be accessed by normal instructions such as MOV. Therefore, special instructions MEMW/MEMR are needed for accessing file registers.
- When PLC is power up (no matter RUN or STOP) and M1101 $=$ ON, the program will read out 50 data from file register No.0~No. 49 to data register D4000~D4049. The initial register number (K0) is specified by D1101, the amount of registers to be moved (K50) by D1102, and the initial register number of target registers (D4000) by D1103. Note that the execution will be done by special M and special D only when PLC is power up.

9. Data Processing Design Examples

9.5 ANSIANR - Level Monitoring Alarm System

Control Purpose:

- Monitoring the water level of an aquaculture farm by alarm and indicator system.

When the level is below the lower bound for 2 minutes, the alarm and the indicator will be ON. At the same time, the water feeding valve will start working until the level is back to normal range.

Devices:

Device	
X0	Level lower bound sensor
X1	Normal level sensor
Y0	Alarm indicator
Y1	Water feeding valve

Control Program:

Program Description:

- When the level is below the lower bound $(\mathrm{XO}=\mathrm{ON})$ for 2 minutes, Y 0 and Y 1 will be ON . The alarm indicator will be ON and the water feeding valve will be enabled.
- When the level reaches normal range ($\mathrm{X} 1=\mathrm{ON}$), Y 0 and Y 1 will be OFF. The alarm will be reset.

9. Data Processing Design Examples

9.6 SORT - Sorting Acquired Data

Control Purpose:

- Collecting 4 voltage data (Corresponding to frequency of AC motor) by DVP04AD-S analog module and 4 temperature data by DVP04TC-S thermocouple module.
- Sorting the 4 channels by voltage in ascending order when $\mathrm{MO}=\mathrm{ON}$ and by temperature in ascending order when M1 = ON.
- Sorting the data and displaying the sorting result.

Devices:

Device	
M0	Sunction
M1	Sorting voltage data
D200~D203	Numbers of channels to be sorted
D204~D207	Storing 4 voltage data
D208~D211	Storing 4 temperature data
D220~D231	Displaying voltage sorting result
D240~D251	Displaying temperature sorting result

Control Program:

Program Description:

- Acquired data before sorting:

	1	2	3
	Channel (CH1~CH4)	Voltage (DVP04AD-S)	Temp. (DVP04TC-S)
1	$(\mathrm{D} 200) 1$	(D204)57	(D208)47
2	$(\mathrm{D} 201) 2$	(D205)59	(D209)42
3	$(\mathrm{D} 202) 3$	(D206)55	(D210)46
4	$(\mathrm{D} 203) 4$	(D207)53	(D211)43

1) Sorted voltage data in ascending order when $\mathrm{MO}=\mathrm{ON}$:

	1	2	3
	Channel (CH1~CH4)	Voltage (DVP04AD-S)	Temp. (DVP04TC-S)
1	$(\mathrm{D} 220) 4$	(D224)53	(D228)43
2	$(\mathrm{D} 221) 3$	$(\mathrm{D} 225) 55$	$(\mathrm{D} 229) 46$
3	$(\mathrm{D} 222) 1$	(D226)57	(D230)47
4	$(\mathrm{D} 223) 2$	(D227)59	(D231)42

The voltage sorting result is: channel 4, channel 3 , channel 1 , and channel 2 . The minimum value is K 53 and the maximum value is K 59 .
2) Sorted temperature data in ascending order when $\mathrm{M} 1=\mathrm{ON}$:

	1	2	3
	Channel (CH1~CH4)	Voltage (DVP04AD-S)	Temp. (DVP04TC-S)
1	(D240)4	(D244)59	(D248)42
2	(D241)1	(D245)53	(D249)43
3	(D242)2	(D246)55	(D250)46
4	(D243)3	(D247)57	(D251)47

The temperature sorting result is: channel 4 , channel 1 , channel 2 , and channel 3 . The minimum value of is K42 and the maximum value is K47.

- The purpose of using M1013 (1s clock pulse) after the drive contacts M10 and M11 is to assure that sorting result can be refreshed in 1s so as to prevent rising edge triggering M10 and M11 when SORT instruction needs to be executed one more time.
- Users can monitor the sorting result and the minimum/maximum value of voltage and temperature.

9. Data Processing Design Examples

9.7 SER - Room Temperature Monitoring

Control Purpose:

- Monitoring the overall temperature condition by acquiring temp. data through air condition system from 20 rooms in the building

Compare the present temp. with the target value. If there are more rooms whose temp. match the target value, it indicates the air condition system functions well.

- Adjusting the air condition devices in rooms with the highest and lowest temp.

Count the amount of rooms whose temp. match the target value so as to judge the efficiency of the air condition system. In addition, search the rooms with the highest and lowest temp for adjusting immediately.

Devices:

Device	Function
X1	Executing SER instruction to search data
D50~D53	Temperature data acquisition of the $1^{\text {st }}$ thermocouple module (unit: $1^{\circ} \mathrm{C}$)
D54~D57	Temperature data acquisition of the $2^{\text {nd }}$ thermocouple module (unit: $1^{\circ} \mathrm{C}$)
D58~D61	Temperature data acquisition of the $3^{\text {rd }}$ thermocouple module (unit: $1^{\circ} \mathrm{C}$)
D62~D65	Temperature data acquisition of the $4^{\text {th }}$ thermocouple module (unit: $1^{\circ} \mathrm{C}$)
D66~D69	Temperature data acquisition of the $5^{\text {th }}$ thermocouple module (unit: $1^{\circ} \mathrm{C}$)
D100	Storing the target value
D200~D204	Storing the temperature search result

Control Program:

X1	MOV	K25	D100	Initialize the target value as $25^{\circ} \mathrm{C}$		
-	FROM	K0	K6	D0	K4	Storing the Temp. data acquired from the 1st thermocouple module in D0~D3.
	FROM	K1	K6	D4	K4	Storing the Temp. data acquired from the 2nd thermocouple module in D4~D7.
	FROM	K2	K6	D8	K4	Storing the Temp. data acquired from the 3rd thermocouple module in D8~D11.
	FROM	K3	K6	D12	K4	Storing the Temp. data acquired from the 4th thermocouple module in D12~D15
	FROM	K4	K6	D16	K4	Storing the Temp. data acquired from the 5th thermocouple module in D16~D19

Program Description:

- Acquired temperature data and search result of 20 rooms:

Room temp.	Target value	No.	Compare result
D50 = K24	D100 = K25	0	-
D51 = K25		1	Equal
D52 = K25		2	Equal
D53 = K25		3	Equal
D54 = K25		4	Equal
D55 = K22		5	Lowest
D56 = K25		6	Equal
D57 = K25		7	Equal
D58 = K25		8	Equal
D59 = K25		9	Equal

Search result	Content
D200 = K16	The amount of rooms with temp. of $25^{\circ} \mathrm{C}$
D201 = K1	The No. of the first room with temp. of $25^{\circ} \mathrm{C}$
D202 = K19	The No. of the last room with temp. of $25^{\circ} \mathrm{C}$
D203 = K5	The No. of the room with lowest temp.
D204 = K11	The No. of the room with highest temp.

9. Data Processing Design Examples

Room temp.	Target value	No.	Compare result
D60 = K25	D100 = K25	10	Equal
D61 = K27		11	Highest
D62 = K25		12	Equal
D63 = K25		13	Equal
D64 = K26		14	-
D65 = K25		15	Equal
D66 = K25		16	Equal
D67 = K25		17	Equal
D68 = K25		18	Equal
D69 = K25		19	Equal

10. High-speed Input/Output Design Examples

10.1 REF/REFF - DI/DO Refreshment and DI Filter Time Setting

Control Purpose:

Refreshing DI/DO status immediately and setting/displaying DI filter time.

- When $\mathrm{MO}=\mathrm{ON}$, refresh the status of input points $\mathrm{XO} \sim \mathrm{X17}$ and send the status to DO . When M1 = ON, transmit the value in D100 to the output points Y0~Y17 and send the output state to output terminals immediately before END instruction.
- By controlling the value in D200 according to the interference degree, users can set the filter time of DI as 0 (actual min. value $=50 \mu \mathrm{~s}$), $10 \mathrm{~ms}, 20 \mathrm{~ms}$ and 30 ms .

Devices:

Device	Function
M0	Starting to refresh the status of input points X0~X17
M1	Starting to refresh the status of output points Y0~Y17
D200	Storing the filter time of the input points

Control Program:

10. High-speed Input/Output Design Examples

Program Description:

- Generally the input state (X) is refreshed at the beginning of program scan cycle, and the output state (Y) is refreshed at the end of END instruction. However, the immediate state refreshing during the program execution process can be performed by Ref instruction.
- Due to severe operating environment, PLC DI signal is frequently interfered and error operations would thus occur. Usually, the interference will not last for a long time. We can apply a filter to DI signals so that the interference would be decreased in principle.
- When D200<K10, the filter time of DI signal $=0$ (Actual value $=50 \mu \mathrm{~s}$). When K10 $\leq \mathrm{D} 200<\mathrm{K} 20$, the filter time $=10 \mathrm{~ms}$. When K20 $\mathrm{D} 200<\mathrm{K} 30$, the filter time $=20 \mathrm{~ms}$. When K30<D200, the filter time $=30 \mathrm{~ms}$. The initial setting of this program in D200 $=$ K10, so the filter time of DI signal in this case is set as 10 ms .
- Users can apply MOV instruction to transmit the filter time of DI signal to D1020 (corresponding to X0~X7) and D1021 (corresponding to X10~X17).
- The filter time changed by REFF instruction during program executing process can be modified in next program scan cycle.

10. High-speed Input/Output Design Examples

10.2 DHSCS - Cutting Machine Control

Control Purpose:

- Counting the number of rotations and controlling the cutter according to the value in C235.

X0 counts once when the axis rotates once. When C235 counts to 1000 , the cutter will perform cutting process once.

Devices:

Device	Function
X0	Photoelectric sensor. $\mathrm{X0}$ turns on once when the axis rotates once
X 1	Photoelectric sensor. $\mathrm{X} 1=$ ON when cutter is released (Y1 = OFF).
Y 1	Cutter
C 235	Counting the number of axis rotations

Control Program:

Program Description:

- The photoelectric sensor X0 is the external input point of C235. X0 turns on once when the axis of conveyor belt rotates once and therefore C235 counts once.
- During the execution of DHSCS instruction, Y1 will be ON when the value in C235 reaches 1000 (Axis rotation $=1000$ times) and then output the state immediately to the external output terminals. Therefore, the cutter will be enabled.
- When the cutter is released, $\mathrm{X} 1=\mathrm{ON} . \mathrm{C} 235$ will be cleared and the cutter Y 1 will be reset. In this case, X 1 turns off. C 235 will restart counting and the above process will be repeated.

10. High-speed Input/Output Design Examples

10.3 DHSZIDHSCR - Multi-segment Coater Control

Control Purpose:

- Painting the products with pigments of three colors: red, yellow and green.

When the axis of conveyor rotates 1000 times, the pigment will be changed and therefore the painting process will be executed as the following order: red, yellow, green, red yellow, green...

Devices:

Device	Function
X 1	Photoelectric sensor. X1 turns on once when the axis rotates once.
Y 1	Painting red pigment
Y2	Painting yellow pigment
Y3	Painting green pigment
C236	Counting the number of axis rotations

Control Program:

Program Description:

- The photoelectric sensor X1 is the external input point of C235. X1 turns on once when the axis of conveyor belt rotates once and therefore C236 counts once.
- When the PV (present value) in C236<K1000 (the number of axis rotations<1000), Y1 = ON and the red pigment will be painted.
- When K1000 P PV in C236sK2000 (1000 saxis rotations ≤ 2000), $\mathrm{Y} 1=\mathrm{OFF}$ and $\mathrm{Y} 2=\mathrm{ON}$. The yellow pigment will be painted.
- When $\mathrm{K} 2000<\mathrm{PV}$ in $\mathrm{C} 236<\mathrm{K} 3000$ (2000<axis rotations <3000), $\mathrm{Y} 1=\mathrm{Y} 2=\mathrm{OFF}$ and $\mathrm{Y} 3=$ ON. The green pigment will be painted. Because $\mathrm{Y} 3=\mathrm{ON}$, the NC (normally closed) contact Y3 is activated to disable DHSZ instruction. However, Y3 will remain ON.
- When the PV in C236 reaches K3000, DHSCR instruction will be executed and Y3 will be reset. Counter C 236 will be cleared because the falling trigger of Y 3 . On the other hand, the NC contact Y3 is OFF and therefore the DHSZ instruction is executed again. C236 starts counting from 0 and the pigment will be painted again as the specified cycle: red, yellow, green, red, yellow, green, etc.

10. High-speed Input/Output Design Examples

10.4 SPD - Wheel Rotation Speed Measurement

Control Purpose:

- Calculating the wheel rotation speed by the equation based on the counted input pulses

Devices:

Device	Function
X 1	Photoelectric sensor for detecting pulses
X7	Executing SPD instruction

Control Program:

Program Description:

- When $\mathrm{X} 7=\mathrm{ON}, \mathrm{SPD}$ instruction will be executed. D2 will calculate the high-speed input pulses by X1 and stop the calculation after 500 ms . The result will be stored in D0 and D1.
- The following equation is for obtaining the rotation speed of the car:

N: Rotation speed (unit: rpm).

$$
\mathrm{N}=\frac{D 0}{n t} \times 60 \times 10^{3}(\mathrm{rpm})
$$

n : The number of pulses produced per rotation
t : \quad Pulse receiving time (ms)
If the number of pulses produced per rotation is K100 and the number of pulses within 500 ms is K 750 , the rotation speed will be:

$$
\mathrm{N}=\frac{D 0}{n t} \times 60 \times 10^{3}=\frac{750 \times 60 \times 10^{3}}{100 \times 500} \times(\mathrm{rpm})=900 \mathrm{rpm}
$$

- The rotation speed N is stored in D20 and D21.

10. High-speed Input/Output Design Examples

10.5 PLSY - Production Line Control Program

Control Purpose:

- When the photoelectric sensor detects products, the servo drive will rotates 5 circles to send the product to the stamping location and perform 2 sec stamping process.

Devices:

Device	
X0	Photoelectric sensor. $\mathrm{X0}=$ ON when sheltered.
Y0	Pulse output
Y1	Pulse direction
Y2	Stamping
T0	Setting the stamping time

Control Program:

10. High-speed Input/Output Design Examples

Program Description:

- When a product is detected by the photoelectric sensor X0, SET instruction will be executed for setting on M0 and PLSY instruction will thus be executed to output pulses by Y1 with frequency of 10 kHz
- When the number of the output pulses reaches 50000 , which means the servo drive rotates 5 circles to send the product to stamping location, M1029 will be ON to activate stamping device Y2. At the same time, timer T0 starts counting for 2 sec . After 2 sec , the NO (Normally Open) contact T0 will be activated to reset M0, which resets PLSY instruction as well as M1029 and Y2. Finally, the stamping process is completed.
- When X0 is triggered once again, PLSY will be executed again and Y0 will start to output pulses. The stamping process will be then repeated.
- Note: In this program, the timing of triggering X0 should be after the complete stamping process otherwise there would be a processing error.

10.6 PWM - Sprayer Valve Control Program

Control Purpose:

- Controlling the sprayer valve opening degree as $25 \%, 50 \%$ and 100% by adjusting the $\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}$ value of PWM technique $(24 \mathrm{~V})$.

For reducing the energy lost during the gradual shut-down/start-up process, we apply the switching method which performs immediate turn-on and turn-off of the current valve. The switching method is somewhat like cutting off the current, and is therefore called a Clipper. However, in the practical application we apply a transistor between the power and the motor for representing the function of the clipper. Pulse signal will be applied to the base of the transistor so as to yield a pulse current between the base and the emitter. The input voltage of motor is in proportion to the $\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}$ value. Therefore, the motor voltage could be adjusted by modulating $\mathrm{t}_{\text {on }} / \mathrm{t}_{\mathrm{off}}$ value. There are various methods to modulate this value and the most common one is to adjust the ON time (t_{on}) rather than adjusting the ON times within specified time period. The method is called PWM (Pulse-Width Modulation).

Devices:

Device	
X 0	$\mathrm{X} 0=$ ON when the button START is pressed
X 1	$\mathrm{X} 1=$ ON when the button STOP is pressed.
X 2	25% opening button.
X 3	50% opening button.
X 4	100% opening button.
Y 1	Controlling the opening degree of the valve
D0	Storing the valve opening degrees

10. High-speed Input/Output Design Examples

Control Program:

Program Description:

- In this program, the sprayer valve opening degree is controlled by the value in DO. Opening degree $=\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\mathrm{off}}=\mathrm{DO} /(\mathrm{K} 1000-\mathrm{DO})$
- When START is pressed, XO will be ON to set MO. The water spraying system will be ready and will start spraying as long as the corresponding opening degree button is pressed.
- When the button 25% is pressed $(\mathrm{X} 2=\mathrm{ON})$, the value in $\mathrm{D} 0=\mathrm{K} 200$ and $\mathrm{D} 0 /(\mathrm{K} 1000-\mathrm{D} 0)=$ 0.25 . The valve opening degree will be 25%.
- When the button 50% is pressed $(\mathrm{X} 3=\mathrm{ON})$, the value in $\mathrm{D} 0=\mathrm{K} 333$ and $\mathrm{D} 0 /(\mathrm{K} 1000-\mathrm{D} 0)=$ 0.50 . The valve opening degree will be 50%.
- When the button 25% is pressed $(\mathrm{X} 4=\mathrm{ON})$, the value in $\mathrm{D} 0=\mathrm{K} 500$ and $\mathrm{D} 0 /(\mathrm{K} 1000-\mathrm{D} 0)=$ 1. The valve opening degree will be 100%.
- When STOP is pressed, X1 will be ON to clear D0 as 0 and $\mathrm{DO} /(\mathrm{K} 1000-\mathrm{D} 0)=0$. The valve opening degree $=0$. At the same time, the system start flag M0 will also be reset.

10. High-speed Input/Output Design Examples

10.7 PLSR - Servo Motor Acceleration/Deceleration Control

Control Purpose:

- Counting the pulses generated by servo motor and performing cutting process when specified number of pulses is counted.

The multi-tooth cam shares same axis with the servo motor. Therefore, when the servo motor rotates once, the proximity switch will detect 10 pulses sent by the ten-teeth cam. When the servo motor rotates 10 times (100 pulses), the conveyor will be stopped and the system will perform cutting process for 1 sec . The program uses a servo motor as a rotation device. Because servo motor requires a bigger load, there should be an acceleration/deceleration process during the working of servo motor. The time for acceleration/deceleration is set as 200 ms as the below diagram:

Devices:

Device	Function
X0	Proximity switch for detecting pulses created by the teeth on cam

Device	Function
X1	X1 = ON when START is pressed.
X2	X2 = ON when PAUSE is pressed.
Y0	High-speed pulse output
Y4	Cutter
C235	High-speed counter

Control Program:

Program Description:

- When START is pressed $(\mathrm{X} 1=\mathrm{ON})$, the servo motor will start at the speed of $0.1 \mathrm{r} / \mathrm{s}(\mathrm{f}=$ 1000 Hz) and the speed will be increased by $0.1 \mathrm{r} / \mathrm{min}$ every 20 ms . After 200 ms , the speed will be $1 \mathrm{r} / \mathrm{s}(\mathrm{f}=10000 \mathrm{~Hz})$ and then remain constant. When the set value is nearly reaching, the servo motor will decelerate and stop rotating when the set value is reached.
- When PAUSE is pressed ($\mathrm{X} 2=\mathrm{ON}$), the servo motor will stop rotating, and the PV in C235 will not be stored. When X2 = OFF, the servo motor will start rotating again and stop when set value is reached.
- When the servo motor rotates once, the proximity switch will detect 10 pulses. When the servo motor rotates 10 times (100 pulses), it will stop rotating and the system will perform cutting process for 1 sec .

11. Floating Point Operation Design Examples

11.1 Elementary Arithmetic for Integer and Floating Point

Control Purpose:

- When the production line runs, the production control engineer needs to monitor its real-time speed. The target speed is $1.8 \mathrm{~m} / \mathrm{s}$.
- The motor and the multi-tooth cam rotate with the same axis. There are 10 teeth on the cam, so the proximity switch will receive 10 pulse signals when the motor rotate once and the production line will move forward for 0.325 m . The equations are as follows:

Motor rotation speed $(\mathrm{r} / \mathrm{min})=$ the received pulses in $1 \mathrm{~min} / 10$
The speed of the production line $=$ the rotation times of motor in $1 \mathrm{~s} \times 0.325=$ (Motor rotation speed/60) $\times 0.325$.

- Indicator status: Production line speed $<0.8 \mathrm{~m} / \mathrm{s}$, the Speed Low indicator will be ON. 0.8 $\mathrm{m} / \mathrm{s} \leq$ production line speed $\leq 1.8 \mathrm{~m} / \mathrm{s}$, the Normal indicator will be on. Production line speed $>1.8 \mathrm{~m} / \mathrm{s}$, the Speed High indicator will be on.
- Display the production line speed for production control engineers to monitor.

Devices:

Device	Function
X0	Pulse frequency detecting switch. X0 $=$ ON when Start is switched on.
X1	Proximity switch. X1 creates a pulse when a tooth on cam is detected.
D0	Storing the detected pulse frequency
D50	Storing the present speed of the production line

11. Floating Point Operation Design Examples

Control Program:

Program Description:

- Calculate the motor rotation speed (r/min) by using SPD instruction to detect the pulse frequency (D0) from the proximity switch. Motor rotation speed $=$ the receiving pulses in $1 \mathrm{~min} / 10=($ pulse frequency $\times 60) / 10=(\mathrm{D} 0 \times 60) / 10$.
- The following equation is for obtaining the production line speed through D0:

$$
\mathrm{v}=\frac{N}{60} \times 0.325=\frac{D 0 \times 60 / 10}{60} \times 0.325 \mathrm{~m} / \mathrm{s}=\frac{D 0}{10} \times 0.325 \mathrm{~m} / \mathrm{s}
$$

V : Production line speed (unit: m/s)
N : Motor speed (unit: r/min)
D0: Pulse frequency If the detected pulse frequency $D 0=K 50$, the production line speed $=\frac{50}{10} \times 0.325 \mathrm{~m} / \mathrm{s}$ $=1.625 \mathrm{~m} / \mathrm{s}$ by the above equation

- The parameter of present production line speed contains decimal points during calculation, therefore the binary floating point operation instruction is needed for performing the calculation. .
- DEZCP instruction is used to compare the present speed with the upper/lower speed limits and the comparison results will be stored in M0~M2.
- There are integers and floating points mixed in the operation. If the operational parameters are not binary floating point values before calculating the production line speed, they have to be converted by FLT instruction
- For monitoring easily, the speed value is multiplied with 1000 to obtain the integer in the end of this program

11. Floating Point Operation Design Examples

11.2 Elementary Arithmetic for Floating Point

Control Purpose:

- Perform the operation $(1.236+1.324) \times 2.5 \div 10.24$ by Delta's binary floating point operation instruction.

Devices:

Device		Function
X0	Initialization switch	
X1	Operation control switch	

Control Program:

Program Description:

- When $\mathrm{X0} 0=\mathrm{ON}$, sent the values of decimal integers to D0~D7 to form 4 decimal floating points.
- When $\mathrm{X} 1=\mathrm{ON}$, elementary arithmetic operations for binary floating points will be executed.
- The binary operational results are not intuitively understandable. Therefore, the binary floating point value would generally be converted into decimal floating point value. In this program, the binary values in (D105, D104) are converted into decimal values in (D107, D106) D106 $=$ K6250, D107 $=$ K-4, so the decimal floating point value $6250 \times 10^{-4}=0.625$.

11. Floating Point Operation Design Examples

MEMO

Introduction:

The wiring principles of RS-232 / RS-485 communication are keeping the connection as short as possible and keeping away from high noise source. The RS-232 communication interface is structured by one to one connections and usually with a shorter connection, so the standard cable or the cable provided by Delta is compatible for common RS- 232 applications. However, for the high-speed RS-485 with long distance connection, high communication speed, large number of stations, high signal attenuation and the possible problems of improper ground potential, mismatched terminal impedance, noise interference, and wiring methods, the inferior communication quality may occur if the above factors are not considered properly. Therefore, users should pay attention to the following notes about the wiring of RS-485 communication:

- The Limit for the Number of Stations:

The limit for the number of stations connected to DVP-PLC is 254 . For RS-485 communication, its hardware interface is compatible with max. 16 stations. If more than 16 stations are required, a RS-485 repeater (IFD-8510) should be applied. Each repeater supports 16 more stations. Users can add stations by adding repeaters till the limit of 254 .

- The Limit for Distance:

In RS-485 communication, it is a function from the data signaling rate to the maximum cable length for transmission. The value of maximum cable length is generally influenced by the factors such as signal distortion and noise. The below graph of the function from signaling rate to cable length is measured by using 24AWG copper twisted pair telephone cable (diameter: 0.51 mm) with the $52.5 \mathrm{PF} / \mathrm{M}$ bypass capacitor and the 100Ω terminal load (please refer to GB11014-89 Appendix A). From the figure, suppose the max. acceptable signal loss is 6 dBV , when data signaling rate is lower than $90 \mathrm{Kbit} / \mathrm{S}$, the limit for cable length will be 1200 m (4 Kft .). However, the graph is conservative and a longer cable length is accessible in practical application. Users can get different cable length by different cable diameters. For example, if the data signaling rate is $600 \mathrm{Kbit} / \mathrm{S}$ and the cable is 24 AWG , the maximum cable length will be 200 m . If the cable is $19 A W G$ (diameter: 0.91 mm), the maximum cable length could be longer than 200 m . If the cable is 28 AWG (diameter: 0.32 mm), the maximum cable length can only be shorter than 200 m .

The relation between the transmission speed (bps) and the transmission distance (foot) for RS-485 standard communication interface:

- The Limit for Cables :

Users should choose shielded twisted pair cables for wiring because the quality of cables will greatly influence the transmission signal. If users use low quality cables (such as PVC twisted pair cables), the signal attenuation will be higher and the transmission distance will be significantly shortened. In addition, the communication could be interfered easily due to the poor noise immunity of low quality cables. Therefore, in situations of high transmission speed, long distance or high noise, the high quality twisted pair cable (such as Polyethylene twisted pair cable) should be used. However, in situations of low transmission speed and low noise, PVC twisted pair cable will be a compatible and cost saving choice though the signal loss of PVC cable could be 1,000 times bigger than high quality cable. If the transmission distance is too long to increase the signal attenuation, users can use RS-485 repeater (IFD-8510) to magnify the signal.

- Wiring Topology:

For RS-485 wiring, the nodes should be near the master cable as much as possible. Generally, daisy chain topology structure is recommended for RS-485 wiring. Topology is the link structure of the connection. The topology of RS-485 must be station-by-station structure, that is, stations should be connected from 1 to 2,2 to 3 , etc. Star and ring topological structures are not permitted.

- Signal Grounding (SG):

Though the RS-485 network can be connected by twisted cables only, it is easily to be interfered by noise and should be connected under the condition that the CMV (Common Mode Voltage) between stations should not exceed the max. allowable CMV of RS-485 transmission IC. If the CMV exceeds the working voltage range of IC, RS-485 will stop working.

However, no matter what degree the CMV is, we suggest users connect each SG of stations (please refer to "Wiring Topology") by using shielded twisted pair cables so as to reduce the CMV. This wiring method provides the shortest circuit for communication and improves the noise immunity as well.

- Terminal Resistor:

All cables have their own characteristic impedance (120Ω for Twisted Pair). When the signal is transferred to the terminal and the terminal impedance is different from the characteristic impedance, echo signal will occur to distort the waveform (convex or concave). This situation is not obvious for short cables but become serious when the cable length increases. In this case, a terminal resistor needs to be applied for maintaining the normal communication.

- Methods to Reduce the Noise:

When RS-485 network is connected according to the above rules and applied with a 120Ω terminator also, most of the noise interference can be reduced. If the interference continues, that means there is a strong noise source near the network. In addition to keeping the cable away from the strong noise source (such as electromagnetic valve, AC motor drive, AC servo drive, or other power equipment and their power lines), the best way to reduce the noise is to add a noise suppressor to the noise source. The figure below is the noise suppressing methods for $A C$ motor drive, $A C$ servo drive, and other power equipment. (To apply X capacitors, Y capacitors, or $\mathrm{X}+\mathrm{Y}$ capacitors) $\mathrm{C}=0.22 \mu \mathrm{f} \sim 0.47 \mu / \mathrm{AC} 630 \mathrm{~V}$.

Generally, the RS-485 communication cable is made of twisted pair and transmits the signal by the potential difference between the twisted pair, and therefore it is called differential mode transmission. Differential mode interference is transferred between 2 cables and belongs to symmetric interference, which can be reduced by applying a stabilizing resistor to the circuit together with twisted pair cables. On the other hand, common mode interference is transferred between the communication cable and the earth, which belongs to asymmetric interference. Common mode interference can be eliminated by the following methods:

1. Use shielded twisted-pair cables and ensure it is well-grounded.
2. Use galvanized pipes to shelter the strong electric field.

12. Communication Design Examples

3. Keep away from the high voltage line when wiring. Do not bond the high voltage power lines and the signal lines together.
4. Use linear stabilizer circuit or high quality switching power supply (ripples < 50 mV).

12. Communication Design Examples

12.1 Communication between PLC and Delta VFD-M Series AC Motor Drive (MODRD/MODWR)

Control Purpose:

- Repeatedly reading the master frequency and output frequency of VFD-M series AC motor drive then store them in D0 and D1 by MODRD instruction.
- Repeatedly setting the running direction and running frequency by MODWR instruction. For example, setting the AC motor drive to run forward in 40 Hz .

Parameter Settings for VFD-M Series AC Motor Drive:

Parameter	Set value	Explanation
P00	03	Master frequency determined by RS485 com port.
P01	03	Operation determined by RS-485 com port, keypad STOP is effective.
P88	01	Communication address: 01
P89	01	Communication rate: 9600
P92	01	MODBUS ASCII mode, $<7, E, 1>$

※ If AC motor drive can not run normally due to improper parameters, users can set P76 = 10 (factory defaults) and then set the parameters according to the above table.

Devices:

Device	Function
M0	Executing MODRD instruction to read master and output frequency.
M1	Executing the first MODWR instruction to set the running direction
M2	Executing the second MODWR instruction to set the running frequency
D10	Set value of the drive running direction.
D11	Set value of the drive running frequency.

Control Program:

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as MODBUS

ASCII, 9600, 7, E, 1. The RS-485 communication format of AC motor drive should be the same with PLC.

- There are only 4 situations for MODBUS communication: flag M1127 for normal communication and M1129, M1140, M1141 for communication errors. Counter C0 counts once when any of the 4 flags is ON. Therefore, the program assures the communication reliability by monitoring the On/Off status of the 4 flags and performs 3 MODBUS instructions in order by the value in counter CO .
- When M0 $=$ ON, [MODRD K1 H2102 K2] instruction will be executed. PLC will read the master frequency and output frequency of AC motor drive, store them in D1073~1076 in ASCII format, and automatically convert the content in D1073~1076 into hexadecimal values to D1050 and D1051.
- When M1 = ON, [MODWR K1 H2000 D10] instruction will be executed. D10 $=\mathrm{H} 12$ and the drive will run forward. The running direction can be changed by the content in D10.
- When M2 = ON, [MODWR K1 H2001 D11] instruction will be executed. D11 $=$ K4000 and the drive running frequency will be 40 Hz . The frequency can be changed by the content in D11.
- On the bottom of this program, [MOV D1050 D0] instruction stores the master frequency of the drive in D0, and [MOV D1051 D1] instruction stores the output frequency of the drive in D1.
- Once PLC starts running, the read/write actions for AC motor drive will be performed repeatedly according to [LD=] instructions.

12. Communication Design Examples

12.2 Communication between PLC and Delta VFD-B Series AC Motor Drive (MODRD/MODWR)

Control Purpose:

- Repeatedly reading the master frequency and output frequency of VFD-B series AC motor drive by MODRD instruction.
- Start AC motor drive in reverse direction when Start is pressed. Increase 1 Hz per second until it reaches 50 Hz . Maintain the frequency at 50 Hz . (MODWR instruction)
- Stop AC motor drive by when Stop is pressed. (MODWR instruction)

Parameter Settings for VFD-B Series AC Motor Drive:

Parameter	Set value	Explanation
$02-00$	04	RS-485 serial communication. Last used frequency saved.
$02-01$	03	RS-485 serial communication. Keypad STOP/RESET enabled.
$09-00$	01	Communication address: 01
$09-01$	02	Communication baud rate: 19200.
$09-04$	03	MODBUS RTU mode, protocol <8,N,2>

※ If AC motor drive can not run normally due to improper parameters, users can set P00-02 = 10 (factory defaults) and then set the parameters according to the above table.

Devices:

Device	Function
X0	Start button for the drive
X1	Stop button for the drive
M0	Executing MODRD instruction to read master and output frequency
M1	Executing the first MODWR instruction to set the running direction
M2	Executing the second MODWR instruction to set the running frequency

Control Program:

M1002				Set communication format: 19200, 8, N, 2
-1	MOV	H99	D1120	
	SET	M1120	Retain communication setting	
	MOV	K100	D1129	Set receiving time-out 100 ms
	SET	M1143	Select communication mode: MODBUS RTU	
	RST	D2	Reset D2 first when PLC runs	
	RST	D10	Reset D10 first when PLC runs	

12. Communication Design Examples

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as MODBUS RTU, 19200, $8, \mathrm{~N}, 2$. The RS-485 communication format of AC motor drive should be the same with PLC.
- There are only 4 situations for MODBUS communication: flag M1127 for normal communication and M1129, M1140, M1141 for communication errors. Counter C0 counts once when any of the 4 flags is ON. Therefore, the program assures the communication reliability by monitoring the On/Off status of the 4 flags and performs 3 MODBUS instructions in order by the value in counter CO .
- When M0 = ON, [MODRD K1 H2102 K2] instruction will be executed. PLC will read the master frequency and output frequency of AC motor drive, store them in D1073~1076 in ASCII format, and automatically convert the content in D1073~1076 into hexadecimal values to D1050 and D1051.
- When M1 = ON, [MODWR K1 H2000 D10] instruction will be executed. D10 $=\mathrm{H} 22$ and the drive will run in reverse. If $\mathrm{D} 10=\mathrm{H} 1$, the drive will be stopped.
- When M2 = ON, [MODWR K1 H2001 D2] instruction will be executed. The frequency can be changed by the content in D2.
- Once PLC starts running, the read/write actions for AC motor drive will be performed repeatedly according to [LD=] instructions.

12. Communication Design Examples

12.3 Communication between PLC and Delta VFD-V Series AC Motor Drive (MODRD/MODWR)

Control Purpose:

- Repeatedly reading the master frequency and output frequency of VFD-V series AC motor drive by MODRD instruction.
- Setting the drive to run forward in 30 Hz by MODRW instruction when X0 is pressed.
- Setting the drive to run in reverse in 20 Hz by MODRW instruction when X 1 is pressed.
- Stopping the drive by MODWR instruction when X 2 is pressed.

Parameter Settings for VFD-V Series AC Motor Drive:

Parameter	Set value	Explanation
$00-20$	1	Master frequency controlled by RS-485 communication.
$00-21$	0	Digital keypad (KPV-CE01)
$09-00$	01	Communication address: 01
$09-01$	9.6	Communication baud rate: 9600.
$09-04$	02	ASCII mode. Protocol: (7, E, 1).

※ If AC motor drive can not run normally due to improper parameters, users can set P00-02 = 10 (factory defaults) and then set the parameters according to the above table.

Devices:

Device	
X0	Forward
X1	Reverse
X2	Stop
M0	Executing MODRD instruction to read master and output frequency
M1	Executing MODWR instruction to set running direction and frequency

Control Program:

M 1002				Set communication format: 9600, 7, E, 1
- \downarrow	MOV	H86	D1120	
	SET	M1120	Retain communication setting	
	MOV	K200	D1129	Set receiving time-out 200 ms
	RST	M1143	Select communication mode: MODBUS ASCII	
	ZRST	D0	D1	Reset D0 and D1 first when PLC runs.

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as MODBUS RTU, 19200, 8, N, 2. The RS-485 communication format of AC motor drive should be the same with PLC.
- Reset D0 and D1 when PLC is powered up so as to ensure the drive is in the Stop status
- When $\mathrm{X0}$ is activated, the drive will run forward ($\mathrm{D} 0=\mathrm{H} 12$) in $30 \mathrm{~Hz}(\mathrm{D} 1=3000)$.
- When X1 is activated, the drive will run in reverse (D0 = H22) in $20 \mathrm{~Hz}(\mathrm{D} 1=\mathrm{K} 2000)$
- When X 2 is activated, the drive will stop. ($\mathrm{D} 0=\mathrm{H} 1, \mathrm{D} 1=0$)
- There are only 4 situations for MODBUS communication: flag M1127 for normal communication and M1129, M1140, M1141 for communication errors. Counter C0 counts once when any of the 4 flags is ON. Therefore, the program assures the communication reliability by monitoring the On/Off status of the 4 flags and performs 2 MODBUS instructions in order by the value in counter CO .
- The master frequency and output frequency stored in D1050 and D1051 will be sent to D2 and D3.
- Once PLC starts running, the read/write actions for AC motor drive will be performed repeatedly according to [LD=] instructions.

12.4 Communication between PLC and Delta ASD-A Series AC Servo Drive (Positioning, MODRD/MODWR)

AC Servo drive control panel

Wiring for Delta ASD-A Series AC Servo Drive:

Control Purpose:

- Reading the target position of AC servo drive (incremental position) by MODRD instruction.
- Setting the target position of AC servo drive (incremental position) by MODRW instruction.
- Enabling the starting and positioning actions of AC servo drive by the input points DI1~ DI2 when corresponding buttons are pressed.
- Showing the status of AC servo drive through indicators by the output points DO1~DO3

Parameter Settings for ASD-A Series AC Servo Drive:

Parameter	Set value	Explanation
P1-01	1	Control Mode and Output Direction
P1-33	1	Position Control Mode (Pr)
P2-10	101	Digital Input Terminal 1 (DI1)
P2-11	108	Digital Input Terminal 2 (DI2)

P2-15	0	Digital Input Terminal 6 (DI6)
P2-16	0	Digital Input Terminal 7 (DI7)
P2-17	0	Digital Input Terminal 8 (DI8)
P2-18	101	Digital Output Terminal 1 (DO1)
P2-19	102	Digital Output Terminal 2 (DO2)
P2-20	105	Digital Output Terminal 3 (DO3)
P3-00	1	Communication Address Setting
P3-01	1	Transmission Speed, Baud rate: 9600
P3-02	1	MODBUS ASCII mode. Data format: (7, E, 1)
P3-03	1	Warning and stopping if communication error occurred.
P3-05	2	RS-485 communication format
P3-06	0	Digital Input Communication Function

※ If AC servo drive can not run normally due to improper parameters, users can set P2-08 = 10 (factory defaults) and then set the parameters according to the above table.

- Operation Steps:

1. Set the parameters of $A C$ servo drive then power up again. If no error occurred, "power normal" indicator (DO1) will be ON.
2. When Power normal indicator is ON, turn on SON (servo ON) to enable DI1. If no error occurred, "Start normal" indicator (DO2) will be ON.
3. When "Start normal" indicator in ON, turn on CTRG (positioning enabled) to trigger DI2.

The servo motor will rotate for 10.5 cycles and then the "positioning completed" indicator (DO3) will be ON.

Devices:

Device	Function
M0	Executing MODRD instruction to read rotation number and pulse number of internal position 1 Executing MODRW instruction to set rotation number and pulse number of M1 internal position 1

Control Program:

12. Communication Design Examples

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as MODBUS ASCII, 9600, 7, E, 1. The RS-485 communication format of AC servo drive should be the same with PLC.
- When $\mathrm{M} 0=\mathrm{ON}$, [MODRD K1 H10F K2] instruction will be executed to read the rotation number and the pulse number of internal position 1 and store them in D1050 and D1051.
- When M1 = ON, [MODWR K1 K16 H10F D10 K2] instruction will be executed to write the content in D10 and D11 into H10F (Rotation number of internal position1) and H10 (pulse number of internal position 1).
- Both the start signal and the trigger signal are controlled by switches of AC servo drive through the external wiring. For the wiring methods, please refer to the wiring diagram.
- There are only 4 situations for MODBUS communication: flag M1127 for normal communication and M1129, M1140, M1141 for communication errors. Counter C0 counts once when any of the 4 flags is ON. Therefore, the program assures the communication reliability by monitoring the On/Off status of the 4 flags and performs 2 MODBUS instructions in order by the value in counter CO .
- Once PLC starts running, the read/write actions for AC servo drive will be performed repeatedly according to [LD=] instructions.

12.5 Communication between PLC and Delta ASD-A Series AC Servo Drive (Speed Control, MODRD/MODRW)

AC servo drive control panel

Wiring for Delta ASD-A Series AC Servo Drive:

Control Purpose:

- Reading rotation speed of servo motor and storing it in D0 by MODRD instruction.
- Controlling the motor to rotate in 2 fixed speeds or specified speed by MODRW instruction together with switches SPD0 and SPD1.
- Definitions of the speed switches of $A C$ servo drive:

SPD0 Status	SPD1 Status	Function
ON	OFF	SPD0 ON: selecting the first speed set in P1-09 (determined by the content in D9, fixed as K1500 in this program. The rotation speed of the motor: 1500 r/min. Direction: forward.)
OFF	ON	SPD1 ON: selecting the second speed set in P1-10 (determined by the content in D10, fixed as K-1500 in this program. The rotation speed of the motor: 1500 r/min. Direction: reverse.)
ON	ON	SPD0 and SPD1 ON: selecting the third speed set in P1-11 (determined by the content in D11. The rotation speed of the motor is specified by user with the content in D11.

12. Communication Design Examples

- Showing the status of AC servo drive through indicators by the output points DO1~DO3.

Parameter Settings for ASDA Series AC Servo Drive:

Parameter	Set value	Explanation
P1-01	2	Control Mode and Output Direction
P1-39	1500	Target Motor Speed: 1500rpm.
P2-10	101	Digital Input Terminal 1 (DI1)
P2-12	114	DI3: the input terminal of SPD0
P2-13	115	D14: the input terminal of SPD1
P2-15	0	No function
P2-16	0	No function
P2-17	0	No function
P2-18	101	DO1 = ON if no error occurred after power up
P2-19	102	DO2 = ON if no error occurred after servo started
P2-20	104	DO3 = ON when target speed reached
P3-00	1	Communication Address Setting
P3-01	1	Transmission Speed, Baud rate: 9600
P3-02	1	MODBUS ASCII mode. Data format: (7, E, 1)
P3-05	2	RS-485 communication format
P3-06	0	Digital Input Communication Function

※ If AC servo drive can not run normally due to improper parameters, users can set P2-08 = 10 (factory defaults) and then set the parameters according to the above table.

- Operation Steps:

1. Set the parameters of $A C$ servo drive then power up again. If no error occurred, "power normal" indicator (DO1) will be ON.
2. When Power normal indicator is ON, turn on SON (servo ON) to enable DI1. If no error occurred, "Start normal" indicator (DO2) will be ON.
3. Turn on "SPD0", the speed set in parameter P1-09 will be enabled. Turn on "SPD1", and the speed set in parameter P1-10 will be enabled. Turn on both "SPD0" and "SPD1", the speed set in parameter P1-11 will be enabled.

Devices:

Device	Function
M0	Executing MODRD instruction to read the rotation speed of motor
M1	Execute MODWR instruction

Control Program:

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as MODBUS ASCII, 9600, 7, E, 1. The RS-485 communication format of AC servo drive should be the same with PLC.
- When enter into step point $\mathrm{S} 0, \mathrm{M} 0=\mathrm{ON},[\mathrm{MODRD} \mathrm{K} 1 \mathrm{H} 4 \mathrm{~K} 1]$ instruction will be executed to read the motor rotation speed and store it in D1050. Then [MOV D1050 D0] instruction will be executed for showing the rotation speed in D0.
- When enter into step S20, M1 = ON, [MODWR K1 K16 H109 D9 K3] instruction will be executed to write the content in D9, D10 and D11 into the H109, H10A and H10B as the parameters of communication address.
- The initial setting in D11 is K1000. Users can specify the value by actual application.
- When PLC starts, the program will enter step S0 then move to step S20 and return to S0. The read/write actions for AC servo drive will be performed repeatedly by this process.

12．6 Communication between PLC and Delta DTA Series Temperature Controller （MODRD／MODWR）

Control Purpose：

－Reading the target value and the set value of the temperature controller（TC）．（address： H4700，MODRD instruction）
－Setting the target temperature as 24°（address H4701，MODWR instruction）
－Setting the heating／cooling control cycle．（address：H4712，MODWR instruction）
－Setting the control mode as cooling．（address：H4718，MODWR instruction）

Parameter Settings for DTA Series Temperature Controller：

Parameter	Function	Set value
［口5H	C WE：Write－in function disable／enable	ON
［－5］	C－SL：ASCII，RTU communication format selection	ASCII
［－пロ	C NO：Communication address setting	1
6P5	BPS：Communication baud rate setting	9600
LEm	LENGTH：Data length setting	7
Prey	PARITY：Parity bit setting	E
SEロP	STOP BIT：Stop bit setting	1
EP回	UNIT：Temperature display unit ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$

※ If TC can not run normally due to improper parameters，users can set the TC to factory defaults first and then set the parameters according to the above table．

Steps of setting factory defaults：
1．Press in the main screen to enter pain ．Use to select SET to save the setting．
2．Press both $\boldsymbol{\}$ and for about 1 s to enter default setting mode．（Other operation is prohibited in this mode，or setting error will occur，and the TC have to be sent back to factory for adjusting）

4．Turn off TC then power up again．
5．The communication protocols of DTA series TC are as follows：
－Supporting MODBUS ASCII／RTU．Baud rate：2400，4800，9600，19200， 38400.
－Supporting function codes：03H（read multiple words）．06H（write 1 word）． Non－supporting function code：10H（write multiple words）．
－Non－supporting formats in ASCII mode：7，N， 1 or 8，O， 2 or 8，E， 2.
－Supporting formats in RTU mode：8，N， 1 or $8, \mathrm{~N}, 2$ or $8, \mathrm{O}, 1$ or $8, \mathrm{E}, 1$ ．
－Available communication address： 1 to 255,0 is broadcast address．

12. Communication Design Examples

Devices:

Devices	Function
M0	Execute MODRD instruction to read target and current temperature.
M 1	Execute the first MODWR instruction to set target temperature of TC.
M 2	Execute the $2^{\text {nd }}$ MODWR instruction to set the heating/cooling cycle time.
M 3	Execute the $3^{\text {rd }}$ MODWR instruction to set the control mode as Cooling.

Control Program:

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as MODBUS ASCII, 9600, 7, E, 1. The RS-485 communication format of TC should be the same with PLC.
- Since DTA series TC does not support the function code 10H (Write multiple words), the program needs 3 MODWR instructions to write 3 address data.
- There are only 4 situations for MODBUS communication: flag M1127 for normal communication and M1129, M1140, M1141 for communication errors. Counter C0 counts once when any of the 4 flags is ON. Therefore, the program assures the communication reliability by monitoring the On/Off status of the 4 flags and performs 4 MODBUS instructions in order by the value in counter C0
- Once PLC starts running, the read/write actions for TC will be performed repeatedly according to [LD=] instructions.

12. Communication Design Examples

12.7 Communication between PLC and Delta DTB Series Temperature Controller (MODRD/MODWR/MODRW)

Control Purpose:

- Reading as well as displaying the target value and the present value of the TC by MODRD instruction.
- Setting the parameters of the TC as following data by MODWR and MODRW instructions.

Parameter	value	Communication address
Target temperature	$26^{\circ} \mathrm{C}$	1001 H
Upper limit of temperature range	$50^{\circ} \mathrm{C}$	1002 H
Lower limit of temperature range	$0^{\circ} \mathrm{C}$	1003 H
Output type of alarm 1	The first alarm type	1020 H
Upper-limit alarm 1	$5^{\circ} \mathrm{C}$	1024 H
Lower-limit alarm 1	$3^{\circ} \mathrm{C}$	1025 H

Parameter Settings for DTB Series Temperature Controller:

Parameter	Function	Set value
[口5H	C WE: Write-in function disable/enable	ON
[-5L	C-SL: ASCII, RTU communication format selection	RTU
[-пロ	C NO: Communication address setting	1
6P5	BPS: Communication baud rate setting	9600
LEm	LENGTH: Data length setting	8
Prey	PARITY: Parity bit setting	N
5EaP	STOP BIT: Stop bit setting	2
EPUn	UNIT: Temperature display unit ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$

※ If TC can not run normally due to improper parameters, users can set the TC to factory defaults first and then set the parameters according to the above table. The setting steps of DTB series are the same with DTA series TC.
※ Communication protocol of DTB series is as following:

1. Supporting MODBUS ASCII/RTU communication protocol. Communication baud rate: 2400, 4800, 9600, 19200, 38400.
2. Supporting function code: 03 H to read the contents of register. 06 H to write 1 word into register. 10H to write many words into register.
3. Non-supported formats in ASCII mode: 7, N, 1 or 8, O, 2 or 8, E, 2
4. Formats in RTU mode: $8, \mathrm{~N}, 1$ or $8, \mathrm{~N}, 2$ or $8, \mathrm{O}, 1$ or $8, \mathrm{E}, 1$.
5. Available communication address: 1 to 255,0 is broadcast address.

Devices:

Device	Function
M0	Executing MODRD instruction to read target and present temperature
M1	Executing the 1st MODWR instruction to set target temperature of TC
M2	Executing the 2nd MODWR instruction to set alarm output type
M3	Executing the 1st MODRW instruction to set the upper/lower limit of temperature range
M4	Executing the 2nd MODRW instruction to set the upper/lower limit of alarm 1

Control Program:

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as MODBUS RTU, 9800, 8, N, 2. The RS-485 communication format of TC should be the same with PLC..
- There are only 4 situations for MODBUS communication: flag M1127 for normal communication and M1129, M1140, M1141 for communication errors. Counter C0 counts once when any of the 4 flags is ON. Therefore, the program assures the communication reliability by monitoring the On/Off status of the 4 flags and performs 5 MODBUS instructions in order by the value in counter CO .
- Since DTB series TC supports the function code 10 H , the program uses MODRW instruction to write multiple words.
- Once PLC starts running, the read/write actions for TC will be performed repeatedly according to [LD=] instructions.

12. Communication Design Examples

12.8 PLC LINK 16 Slaves and Read/Write 16 Data (Word)

Control Purpose:

- Performing 16 words data exchange by PLC LINK between master PLC and 3 slave PLCs.

Parameter Settings for PLC:

Master/Slave	Station No.	Communication format
Master PLC	K20 (D1121 $=$ K20 $)$	ASCII, 9600, 7, E, $1($ D1120 $=$ H86 $)$. Communication format of all connected
Slave 1	K2 (D1121 $=$ K2 $)$	

If PLC can not run normally due to improper parameters, users can set the PLC to factory defaults by clicking "Communication (C)"> "Format PLC Memory" from the menu bar of WPL Soft and then set the parameters according to the above table.

Devices:

Device	Function
X0	Trigger on PLC LINK
M1350	Enabling EASY PLC LINK
M1351	Enabling auto mode on EASY PLC LINK
M1352	Enabling manual mode on EASY PLC LINK
M1353	Enable 32 slave unit linkage and up to 100 data length of data exchange
M1354	Enable simultaneous data read/write in a polling of EASY PLC LINK

Control Program:

Program Description:

- When $\mathrm{XO}=\mathrm{ON}$, the data exchange between Master and 3 Slaves will be performed through PLC LINK by the ways explained below: the data in D100 ~ D115, D120~D135, and D140~D155 of the 3 Slaves will be read respectively into D1480~D1495, D1512~D1527 and D1544~ D1559 of the Master, and the data in D1496 ~ D1511, D1528 ~ D1543 and

12. Communication Design Examples

D1560~D1575 of the Master will be written respectively into D200 ~ D215, D220~D235 and D240~D255 of the 3 Slaves.

Master PLC *1		Slave PLC *3
D1480~D1495		D100~D115 of Slave ID 2\#
D1496~D1511		D200~D215 of Slave ID 2\#
D1512~D1527	- Read	D120~D135 of Slave ID 3\#
D1528~D1543	\longrightarrow	D220~D235 of Slave ID 3\#
D1544~D1559	Read	D140~D155 of Slave ID 4\#
D1560~D1575	Write \longrightarrow	D240~D255 of Slave ID 4\#

- Assume that the data in D for data exchange between Master and Slave before PLC LINK is enabled (M1350 = OFF) are as below:

Master PLC	Set value	Slave PLC	Set value
D1480~D1495	0	D100~D115 of Slave ID 2\#	1
D1496~D1511	100	D200~D215 of Slave ID 2\#	0
D1512~D1527	0	D120~D135 of Slave ID 3\#	2
D1528~D1543	200	D220~D235 of Slave ID 3\#	0
D1544~D1559	0	D140~D155 of Slave ID 4\#	3
D1560~D1575	300	D240~D255 of Slave ID 4\#	0

After EASY PLC LINK is enabled ($\mathrm{M} 1350=\mathrm{ON}$), the data in D for data exchange becomes:

Master PLC	Set value	Slave PLC	Set value
D1480~D1495	1	D100~D115 of Slave ID 2\#	1
D1496~D1511	100	D200~D215 of Slave ID 2\#	100
D1512~D1527	2	D120~D135 of Slave ID 3\#	2
D1528~D1543	200	D220~D235 of Slave ID 3\#	200
D1576~D1591	3	D140~D155 of Slave ID 4\#	3
D1592~D1607	300	D240~D255 of Slave ID 4\#	300

- In Master PLC, set the starting Slave ID (D1399 = K2), i.e. Slave ID 2\# corresponds to Slave1, Slave ID 3\# corresponds to Slave2, and Slave ID 4\# corresponds to Slave3.
- Station No. of Slave should be continuous and different from the station No. of Master. Only the SA/SX/SC/SV/EH/EH2 series PLC can be Master, but all DVP-PLC can be Slave.
- When X0 $=$ ON, PLC LINK will be enabled. If enabling action is failed, M1350/M1351 will be OFF and XO needs to be activated again.

12.9 PLC LINK 32 Slaves and Read/Write 100 Data (Word)

Control Purpose:

- Performing 100 words data exchange by PLC LINK between master PLC and 2 Slave PLCs.

Parameter Settings for PLC:

Master/Slave	Station No.	Communication format
Master PLC	K20 (D1121 $=$ K20 $)$	RTU, 19200, 8, N, 2(D1120=H99).
Communication format of all connected PLCs must		
be the same.		

※ If PLC can not run normally due to improper parameters, users can set the PLC to factory defaults by clicking "Communication (C)"> "Format PLC Memory" from the menu bar of WPL Soft and then set the parameters according to the above table.

Devices:

Device	Function
X0	Trigger on PLC LINK
M1350	Enabling EASY PLC LINK
M1351	Enabling auto mode on EASY PLC LINK
M1352	Enabling manual mode on EASY PLC LINK
M1353	Enable 32 slave unit linkage and up to 100 data length of data exchange
M1354	Enable simultaneous data read/write in a polling of EASY PLC LINK

Control Program:

12. Communication Design Examples

Program Description:

- When X0 $=$ ON, the data exchange between Master and 3 Slaves will be performed through PLC LINK by the ways explained below: D0~D99 of Slave 1 will be read to D0~D99 of Master. D100~D199 of Master will be written in D100~D199 of Slave 1. D200~D299 of Slave 2 will be read to D200~D299 of Master. D300~D399 will be written to D300~D399 of Slave 2.

Master PLC *1		Slave PLC *2
D0~D99	Read	D0~D99 of Slave ID 1\#
D100~D199	$\text { Write } \rightarrow$	D100~D199 of Slave ID 1\#
D200~D299		D200~D299 of Slave ID 2\#
D300~D399		D300~D399 of Slave ID 2\#

- Assume that the data in D for data exchange between Master and Slave before PLC LINK is enabled (M1350 = OFF) are as below:

Master PLC	Set value	Slave PLC	Set value
D0~D99	0	D0~D99 of Slave ID 1\#	1
D100~D199	100	D100~D199 of Slave ID 1\#	0
D200~D299	0	D200~D299 of Slave ID 2\#	2
D300~D399	200	D300~D399 of Slave ID 2\#	0

After EASY PLC LINK is enabled ($\mathrm{M} 1350=\mathrm{ON}$), the data in D for data exchange becomes:

Master PLC	Set value	Slave PLC	Set value
D0~D99	1	D0~D99 of Slave ID 1\#	1
D100~D199	100	D100~D199 of Slave ID 1\#	100
D200~D299	2	D200~D299 of Slave ID 2\#	2
D300~D399	200	D300~D399 of Slave ID 2\#	200

- In Master PLC, set the starting Slave ID (D1399 = K1), i.e. Slave ID 1\# corresponds to Slave1 and Slave ID 2\# corresponds to Slave2.
- Station No. of Slave should be continuous and different from the station No. of Master. Only the SV/EH/EH2 series PLC can be Master, but all DVP-PLC can be Slave.
- When X0 $=$ ON, PLC LINK will be enabled. If enabling action is failed, M1350/M1351 will be OFF and X0 needs to be activated again.

12. Communication Design Examples

12.10 LINK between PLC, Delta AC Motor Drive and AC Servo Drive

Wring for Delta ASD-A Series AC Servo drive:

12. Communication Design Examples

Control Purpose:

- Setting and reading the frequency to control the Start/Stop and Forward/ Reverse status of AC motor drive.
- Setting and reading the rotation speed of servo motor.

Parameter Settings for AC Motor Drive:

Parameter	Set value	Explanation
$02-00$	04	RS-485 serial communication. Last used frequency saved.
$02-01$	03	RS-485 serial communication. Keypad STOP/RESET enabled.
$09-00$	01	Communication address: 01
$09-01$	01	Communication baud rate: 9600.
$09-04$	01	MODBUS ASCII mode, protocol $<7, E, 1>$

※ If AC motor drive can not run normally due to improper parameters, users can set P00-02 = 10 (factory defaults) and then set the parameters according to the above table.

Parameter Settings for AC Servo Drive:

Parameter	Set value	Explanation
P0-02	6	Drive Status. Display rotation speed on servo panel
P0-04	6	Status Monitor 1. Data register for current rotation speed
P1-01	2	Control Mode and Output Direction
P2-10	101	Digital Input Terminal 1 (DI1)
P2-12	114	Digital Input Terminal 3 (DI3)
P2-15~17	0	Digital Input Terminal 6 (DI6). No function
P3-00	2	Communication Address Setting
P3-01	1	Transmission Speed, Baud rate: 9600
P3-02	1	MODBUS ASCII mode. Data format: (7, E, 1)
P3-05	2	RS-485 communication format

※ If AC servo drive can not run normally due to improper parameters, users can set P2-08 $=10$ (factory defaults) and then set the parameters according to the above table

Devices:

Device	Function
X0	Trigger on PLC LINK
M1350	Enabling EASY PLC LINK
M1351	Enabling auto mode on EASY PLC LINK
M1352	Enabling manual mode on EASY PLC LINK
M1353	Enable 32 slave unit linkage and up to 100 data length of data exchange
M1354	Enable simultaneous data read/write in a polling of EASY PLC LINK

Control Program:

Program Description:

- Registers D1480~D1481 in PLC correspond to parameters H2102~H2103 of AC motor drive. When X0 $=$ ON, PLC LINK will be enabled and the value of $\mathrm{H} 2102 \sim \mathrm{H} 2103$ will be shown in D1480~D1481.
- Registers D1496~D1497 in PLC correspond to parameters H2000~H2001 of AC motor drive. When X0 = ON, PLC LINK will be enabled and the value in H2000~H2001 can be determined by the content in D1496~D1497.
- Status of AC motor drive can be controlled by setting the value in D1496. (D1496 $=\mathrm{H} 12, \mathrm{AC}$
motor drive runs forward. D1496 $=\mathrm{H} 1, \mathrm{AC}$ motor drive stops.)
- Frequency of AC motor drive can be changed by setting the value in D1497. (D1497 = K4000, the frequency of AC motor drive will be 40 Hz .)
- Before PLC LINK is enabled between PLC and servo motor, turn on "SON" to start servo and then turn on "SPDO" to ensure the speed mode which controlled by internal registers is enabled.
- D1512 in PLC corresponds to communication parameter H0004 of AC servo drive. When X0 = ON, PLC LINK will be enabled and the value of H0004 will be shown in D1512.
- D1528 in PLC corresponds to communication parameter H0109 of AC servo drive. When X0 = ON, PLC LINK will be enabled and the value of H0109 can be specified in D1528.
- Rotation speed of servo motor can be changed by the content in D1528. (When D1528 = K3000, the rotation speed of servo motor will be 3000 rpm .
- Station No. of Slave should be continuous and different from the station No. of Master. SA/SX/SC/SV/EH/EH2 series PLC can be Master. ES/EX/SS series can not be Master.
- When X0 $=$ ON, PLC LINK will be enabled. If enabling action is failed, M1350/M1351 will be OFF and X0 needs to be activated again..

12. Communication Design Examples

12.11 LINK between PLC, Delta DTA and DTB Series Temperature Controllers

DTA Temperature Controller
DTB Temperature controller

Control Purpose:

- Setting the target temperature and reading the present/target temperature of DTA TC.
- Setting the target temperature, upper/lower limit of temperature range and reading the present/target temperature of DTB TC.

Parameter Settings for DTA Series Temperature Controller:

Parameter	Function	Set value
[ם5H	C WE: Write-in function disable/enable	ON
[-5]	C-SL: ASCII, RTU communication format selection	ASCII
[-пロ	C NO: Communication address setting	1
6 P 5	BPS: Communication baud rate setting	9600
LEn	LENGTH: Data length setting	7
Pres	PARITY: Parity bit setting	E
5EaP	STOP BIT: Stop bit setting	1
ヒP■ா	UNIT: Temperature display unit ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$

※ If TC can not run normally due to improper parameters, users can set the TC to factory defaults first and then set the parameters according to the above table. DTA TC does not support writing multiple words, so the number of the written data should set to "1 ".

12. Communication Design Examples

Parameter Settings for DTB Series Temperature Controller:

Parameter	Function	Set value
[ם5H	C WE: Write-in function disable/enable	ON
[-5]	C-SL: ASCII, RTU communication format selection	ASCII
[-ma	C NO: Communication address setting	2
$6 P 5$	BPS: Communication baud rate setting	9600
LEr	LENGTH: Data length setting	7
Prey	PARITY: Parity bit setting	E
5EaP	STOP BIT: Stop bit setting	1
EPUn	UNIT: Temperature display unit ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$

※ If TC can not run normally due to improper parameters, users can set the TC to factory defaults first and then set the parameters according to the above table.

Devices:

Device	Function
X0	Trigger on PLC LINK
M1350	Enabling EASY PLC LINK
M1351	Enabling auto mode on EASY PLC LINK
M1352	Enabling manual mode on EASY PLC LINK
M1353	Enable 32 slave unit linkage and up to 100 data length of data exchange
M1354	Enable simultaneous data read/write in a polling of EASY PLC LINK

Control Program:

$\stackrel{\text { M1002 }}{\mid+1}$	MOV	K10	D1121	Set the Master ID
	MOV	H86	D1120	Set the Master COM2 communication format
	SET	M1120	Retain	ommunication setting
	MOV	K200	D1129	Set receiving time-out: 200 ms
	MOV	K1	D1399	Set starting Slave ID as K1
	MOV	H4700	D1355	Set starting reference for Master to read from DTA: H4700
	MOV	K2	D1434	2 data to be read from DTA

Program Description:

- Registers D1480~D1481 in PLC correspond to communication parameters H4700~H4701 of DTA TC. When X0 $=$ ON, PLC LINK will be enabled and the value of $\mathrm{H} 4700 \sim \mathrm{H} 4701$ (present and target temperature) will be shown in D1480~D1481.
- Register D1496 in PLC corresponds to communication parameter H4701 of DTA TC. When X0 $=$ ON, PLC LINK will be enabled and the value of H 4701 can be determined by the content in D1496.
- Status of DTA TC can be controlled by setting the value in D1496. (D1496 $=K 300$, the target temperature will be $30^{\circ} \mathrm{C}$.)
- Registers D1512~ D1513 in PLC correspond to communication parameters H1000~H1001 of DTB TC. When X0 $=$ ON, PLC LINK will be enabled and the value of $\mathrm{H} 1000 \sim \mathrm{H} 1001$ (present and target temperatures) will be shown in D1512~ D1513.
- Registers D1528~D1530 in PLC correspond to communication parameters H1001~ H1003 of DTB series temperature controller. When X0 $=$ ON, PLC LINK will be enabled and the value of H1001~ H1003 can be determined by the content in D1528~D1530.
- Target temperature of DTB can be specified by the value in D1528 (D1528 $=$ K400, the target temperature will be $40^{\circ} \mathrm{C}$.)
- Upper/lower limit of temperature range of DTB can be specified by the value in D1529~1530. $\left(\mathrm{D} 1529=\mathrm{K} 500\right.$ and $\mathrm{D} 1530=\mathrm{K} 10$, the upper limit will be $50^{\circ} \mathrm{C}$ and lower limit will be $1^{\circ} \mathrm{C}$.
- Station No. of Slave should be continuous and different from the station No. of Master. SA/SX/SC/SV/EH/EH2 series PLC can be Master. ES/EX/SS series can not be Master.
- When X0 $=$ ON, PLC LINK will be enabled. If enabling action is failed, M1350/M1351 will be OFF and X0 needs to be activated again.

12.12 Controlling START/STOP of 2 DVP PLCs through Communication (RS Instruction)

Control Purpose:

- Controlling start/stop status of 2 Slave PLCs through communication by master PLC.

Parameter Settings:

Master/Slave	Station No.	Communication format
Master PLC	K10 (D1121 $=$ K10 $)$	ASCII, 9600, 7, E, 1 $(\mathrm{D} 1120=\mathrm{H} 86)$. Communication format of all connected Slave PLCs must be the same.
Slave 1	K1 (D1121 $=$ K1 $)$	
Slave 2	K2 $(\mathrm{D} 1121=\mathrm{K} 2)$	

※ If PLC can not run normally due to improper parameters, users can set the PLC to factory defaults by clicking "Communication (C)"> "Format PLC Memory" from the menu bar of WPL Soft and then set the parameters according to the above table.

Devices:

Device	
X0	Sunction
X1	Start/stop Slave 1
M0 Slave 2	
M1	Execute the 1st RS instruction

Control Program:

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as MODBUS ASCII, 9600, 7, E, 1. The RS-485 communication format of Slave should be the same with Master PLC.
- There are 2 situations for RS communication: M1123 for normal communication and M1129 for receiving timeout. When communication time-out occurred, M4 can be used to retry.
- When $\mathrm{XO}=\mathrm{ON}$, Slave 1 will start running. When $\mathrm{XO}=\mathrm{OFF}$, Slave 1 will stop.
- When X1 = ON, Slave 2 will start running. When X1 = OFF, Slave 2 will stop.

12. Communication Design Examples

12.13 Communication between Delta PLC and Siemens MM420 Frequency Inverter (RS Instruction)

Control Purpose:

- Controlling the start/stop of Siemens MM420 series AC motor drive through communication by master PLC.

Parameter Settings for MM420 AC Motor Drive:

Parameter	Set value	Function
P0003	3	User access level: expert
P0700	5	Selection of command source: USS on COM link (RS-485)
P1000	5	Selection of frequency setpoint: USS on COM link (RS-485)
P2010	6	USS baud rate: 9600bps
P2011	0	USS address: 0

※ If Siemens MM420 can not run normally due to improper parameters, users can set MM420 to factory defaults: set P0010 $=30, \mathrm{P} 0970=1$. Then set the parameters according to the above table.

Devices:

Device		Function
X0	Start/stop switch	

Control Program:

12. Communication Design Examples

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as 9600, 8, E, 1. The RS-485 communication format of MM420 (set by P2010) should be the same with Master PLC.
- When X0 $=0 \mathrm{ON}, \mathrm{MM} 420$ will be started to run forward in 40 Hz .

PLC \Rightarrow MM420, PLC sends: 020600 047F 3333 7F
MM420 \Rightarrow PLC, PLC receives: 020600 FB34 3333 CB
Registers for sent data (PLC sends out message):

Register	DATA	Explanation
D100 low	02H	Head. Fixed as 02H. (start of the message)
D100 high	06H	The number of the following bytes
D101 low	OOH	Station No. (range: 0~31, corresponding to hex 00H~1FH)
D101 high	04H	Control word (starting MM420. Refer to Remarks for definitions.)
D102 low	7FH	
D102 high	33H	Frequency ($4000 \mathrm{H}=$ base frequency $50 \mathrm{~Hz}, 3333 \mathrm{H}=40 \mathrm{~Hz}$)
D103 low	33H	
D103 high	7FH	Tail. (XOR result of all the bytes before this byte)

Registers for received data (MM420 responds with messages):

Register	DATA	
D120 low	02H	Head. Fixed as 02H (start of the message)
D120 high	06 H	The number of the following bytes

Register	DATA	Explanation
D121 low	$00 H$	Station No. (range: 0~31, corresponding to hex $00 \mathrm{H} \sim 1 \mathrm{FH}$)
D121 high	FBH	Status word (Refer to Remarks for definitions)
D122 low	34 H	
D122 high	33 H	Frequency $(4000 \mathrm{H}=$ base frequency $50 \mathrm{~Hz}, 3333 \mathrm{H}=40 \mathrm{~Hz})$
D123 low	33 H	
D123 high	CBH	Tail. (XOR result of all the bytes before this byte)

- When $\mathrm{XO}=$ OFF, MM420 will stop.

PLC $\Rightarrow M M 420$, PLC sends: 020600 047A 0000 7A
MM420 \Rightarrow PLC , PLC receives: 020600 FB11 0000 EE
Register for sent data (PLC sends out message):

Register	DATA	Explanation
D100 low	02 H	Head. Fixed as 02H (start of the message)
D100 high	06 H	The number of the following bytes
D101 low	00 H	Station No. (range: 0~31, corresponding to hex 00H~1FH)
D101 high	04 H	Control word (Refer to Remarks for definitions)
D102 low	7 AH	
D102 high	00 H	Frequency $(0000 \mathrm{H}=0 \mathrm{~Hz})$
D103 low	00 H	
D103 high	7 AH	Tail. (XOR result of all the bytes before this byte)

Register for received data (MM420 responds with messages):

Register	DATA	Explanation
D120 low	$02 H$	Head. Fixed as 02H (start of the message)
D120 high	$06 H$	The number of the following bytes
D121 low	$00 H$	Station No. (range: 0~31, corresponding to hex 00H~1FH)
D121 high	FBH	Status word (Refer to Remarks for definitions)
D122 low	11 H	
D122 high	$00 H$	Frequency $(0000 \mathrm{H}=0 \mathrm{~Hz})$
D123 low	$00 H$	
D123 high	EEH	Tail. (XOR result of all the bytes before this byte)

- There are 2 situations for RS communication: M1123 for normal communication and M1129 for receiving timeout. When communication time-out occurred, M2 can be used to retry

Remarks:

- Siemens MM420 series AC motor drive uses USS communication protocol and allows maximum of one master connected with 31 slaves. Slave ID: 0~31

The structure of the communication message:

STX Head	LGE Data length	ADR Address	PKW Parameter data area	PZD Process data area	BCC Checksum
One byte	One byte One byte	\longleftrightarrow Data area (N words) \longrightarrow One byte			

- For STX, LGE, ADR and BCC areas, the data length is fixed as 1 byte.
- STX is fixed as 02H, meaning the start of the message.
- LGE is the number of bytes between ADR area and BCC area.
- ADR is the USS communication address. Range: 0~31 corresponds to hex 00H $\sim 1 \mathrm{FH}$.
- Data area is divided into PKW area and PZD area. PKW area is used for reading/writing the parameters of AC motor drive and contains $0 \sim 4$ word. (Usually 4 words, refer to the setting of P2013). PZD area is used for controlling AC motor drive including frequency setting and contains $0 \sim 4$ word. (Usually 2 words, refer to the setting of P2012). The first word is control word for AC motor drive and the second is for setting the frequency of AC motor drive.
- PKW and PZD can be used either or both. Usually, only PZD is used for controlling the status and frequency setting of AC motor drive. This program uses PZD with the length of 2 words and the structure is as follows:

02	06	00	047F 3333	$7 F$
STX	LGE	ADR	\leftarrow DATA(PZD) \rightarrow	BCC

In the above figure, 047FH is the control word for starting AC motor drive. 3333 H is the frequency. Since H4000 corresponds to base frequency $50 \mathrm{~Hz}, 3333 \mathrm{H}$ corresponds to 40 Hz .

- BCC checksum: the XOR result of the bytes from STX to PZD.

For example: 02H XOR 06H XOR 00H XOR 04H XOR 7FH XOR 33H XOR $33=$ H7F

- Definition of the control word for AC motor drive in PZD area (PLC sends out messages):

Bit	Explanation	Bit status	
00	ON (ramp up enabled)/OFF1 (ramp down disabled)	0 No (OFF1)	1 Yes (ON)
01	OFF2: Coast to standstill	0 Yes	1 No
02	OFF3: Quick ramp down	0 Yes	1 No
03	Pulses enabled	0 No	1 Yes
04	RFG (ramp function generator) enabled	0 No	1 Yes
05	RFG (ramp function generator) start	0 No	1 Yes
06	Set value of frequency enabled	0 No	1 Yes
07	Fault acknowledge	0 No	1 Yes
08	JOG right	0 No	1 Yes
09	JOG left	0 No	1 Yes
10	Controlled by PLC	0 No	1 Yes
11	Reverse	0 No	1 Yes
12	Reserved	-	-

12. Communication Design Examples

Bit	Explanation	Bit status	
13	MOP (motor potentiometer) up	0 No	1 Yes
14	MOP (motor potentiometer) down	0 No	1 Yes
15	Local/remote control	0 No	1 Yes

Note: Among the control word from by PLC to AC motor drive, bit 10 must be set as 1 . If nit 10 is 0 , the control word will be invalid and $A C$ motor drive will go on running as before.

- Definition of the status word of AC motor drive in PZD area (AC motor drive responds with messages):

Bit	Explanation	Bit status	
00	Drive ready	0 No (OFF1)	1 Yes (ON)
01	Drive ready to run	0 No	1 Yes
02	Drive running	0 No	1 Yes
03	Drive fault active	0 No	1 Yes
04	OFF2 active	0 Yes	1 No
05	OFF3 enabled	0 No	1 Yes
06	Switch on inhibit active	0 No	1 Yes
07	Drive warning active	0 No	1 Yes
08	Excessive deviation	0 Yes	1 No
09	PZDI (process data) control	0 No	1 Yes
10	Maximum frequency reached	0 No	1 Yes
11	Over current alarm	0 Yes	1 No
12	Motor holding brake enabled	0 Yes	1 No
13	Motor overload	0 Yes	1 No
14	Motor running forward	0 No	1 Yes
15	Inverter overload	0 Yes	1 No

12. Communication Design Examples

12.14 Communication between Delta PLC and Danfoss VLT6000 Series Adjustable Frequency Drive (RS Instruction)

Control Purpose:

- Controlling the start/stop status and reading out the frequency of Danfoss VLT6000 series frequency drive through communication by master PLC.

Parameter Settings for VLT6000 Series frequency drive:

Parameter	Set value	Explanation
P500	0	FC protocol : Serial communication protocol
P501	1	FC communication address: 1
P502	5	FC communication baud rate: 9600 bps
P503	1	Coasting stop controlled by serial communication
P504	1	DC braking controlled by serial communication
P505	1	Start controlled by serial communication

※ If Danfoss VLT6000 frequency inverter can not run normally due to improper parameters, users can set VLT6000 to factory defaults: set P620 = 3 and press OK. Then set the parameters according to the above table.

Devices:

DEVICE	
X0	Start/stop switch
M0	Executing the 1st RS instruction
M1	Executing the 2nd RS instruction

Control Program:

M 1002				Set communication format: $9600,8, \mathrm{E}, 1$
- ${ }^{+}$	MOV	H87	D1120	
	SET	M1120	Retain	ommunication setting
	MOV	K200	D1129	Set receiving timeout: 200 ms
	MOV	HE02	D100	
	Mov	H1201	D101	Start VLT6000 to run
	MOV	H0	D102	and read the running
	mov	но	D103	
	mov	H0	D104	I
	MOV	H400	D105	

When M0 = ON, send out 16 bytes data in D100~D107 and store the received data from slave in D120~D127

RS	D200	K8	D220	K8

When M1 = ON, send out 8 bytes data in D200~D203

Program Description:

- Initialize PLC RS-485 communication port and set the communication format as, 9600, 8, E, 1. The RS-485 communication format of VLT6000 should be the same with Master PLC.
- When X0 $=0 \mathrm{ON}, \mathrm{VLT} 6000$ starts to run forward in 40 Hz and its output frequency will be read out.

PLC \Rightarrow VLT6000, PLC sends: 02 0E 011200000000000000 047F 200044
VLT6000 \Rightarrow PLC, PLC receives: 02 0E 0112000000 000000FA 0F07 1FFF 0D
Register for sent data (PLC sends out messages):

Register	Data	Explanation			
D100 low	02H	Head, fixed as 02H (start of the message)			
D100 high	OEH	The number of the following bytes			
D101 low	01H	Station No. (range: 0~31, corresponding to hex 00H~1FH)			
D101 high	12H	PKW area	PKE	1H: function code for reading parameters 200H: parameter No. P512 (output frequency)	
D102 low	00H				
D102 high	00H		IND	Index area (used in indexed parameters, such as P615. Not used in this program.)	
D103 low	00H				
D103 high	00H		PWE high	Value: 1 (In read status: 0 . In write status: high word will be read)	
D104 low	00H				
D104 high	00H		PWE low	Value: 2 (In read status: 0 . In write status low word will be read)	
D105 low	00H				
D105 high	04H	PCD1 area	Control word (starting VLT6000. For the definition, please refer to Remarks.)		
D106 low	7FH				
D106 high	20H	PCD2 area	Frequency (4000H corresponds to base frequency 50 Hz and 2000 H corresponds to 25 Hz)		
D107 low	00H				
D107 high	44H	BCC area	Tail. (XOR result of all the bytes before this byte)		

Register for received data (VLT6000 responds with messages):

Register	Data	Explanation			
D120 low	02H	Head, fixed as 02H (start of the message)			
D120 high	OEH	The number of the following bytes			
D121 low	01H	Station No. (range: 0~31, corresponding to hex 00H~1FH)			
D121 high	12 H	PKW area	PKE	1H: function code for reading parameters 200H: parameter No. P512 (output frequency)	
D122 low	00H				
D122 high	00H		IND	Index area (used in indexed parameters, such as P615. This program doesn't use.)	
D123 low	00H				
D123 high	00H			High word will be read	
D124 low	OOH		PWEhigh		
D124 high	00H		PWE ${ }_{\text {low }}$	Low word will be read (00FAH corresponds to the decimal value 250 which means the frequency of 25 Hz .	
D125 low	FAH				
D125 high	0FH	PCD1 area	Status word (For the definition, please refer to Remarks.)		
D126 low	07H				
D126 high	1FH	PCD2 area	Frequency $(4000 \mathrm{H}$ corresponds to the base frequency 50 Hz and 1 FFFHZ corresponds to 25 Hz)		
D127 low	FFH				
D127 high	0DH	BCC area	Tail. (XOR result of all the bytes before this byte)		

- When X0 $=$ OFF, AC motor drive will stop. (Only PCD area is applied in this message).

PLCदVLT6000, PLC sends: 0206010477000076
VLT6000 \Rightarrow PLC, PLC receives: 0206010603000000
Register for sent data (PLC sends out messages):

Register	Data	Explanation
D200 low	02H	Head, fixed as 02H (start of the message)
D200 high	06H	The number of the following bytes
D201 low	01H	Station No. (range: 0~31, corresponding to hex $00 \mathrm{H} \sim 1 \mathrm{FH}$)
D201 high	04H	Control byte (starting AC motor drive. For the definition, please refer to Remarks.)
D202 low	77H	
D202 high	OOH	Frequency (0000H corresponding to 0 Hz)
D203 low	00H	
D203 high	76H	Tail. (XOR result of all the bytes before this byte)

Register for received data (VLT6000 responds with messages):

Register	Data	Explanation
D220 low	02H	Head, fixed as 02H (start of the message)
D220 high	06H	The number of the following bytes
D221 low	01H	Station No. (range: 0~31, corresponding to hex 00H~1FH)
D221 high	06H	Status byte (starting AC motor drive. For the definition, please refer to Remarks.)
D222 low	03H	
D222 high	00H	Frequency (0000 H corresponding to 0 Hz)
D223 low	00H	
D223 high	00 H	Tail. (XOR result of all the bytes before this byte)

- There are 2 situations for RS communication: M1123 for normal communication and M1129 for receiving timeout. When communication time-out occurred, M2 can be used to retry.

Remarks:

- There are 3 protocols for Danfoss VLT6000 series inverter: FC (default), Metasys N2 and LS FLN. This program uses FC protocol which is similar with USS protocol used by Siemens MM420 series inverter: allows maximum of one master connected with 31 slaves. Slave ID: $0 \sim 31$.

The structure of the communication message:

- The definitions of STX, LGE, ADR and BCC areas of FC protocol are the same as that of USS protocol. Please refer to Remarks in example 12.13 for description of USS protocol.
- 3 kinds of messages can be used in data area:

1. Includes parameter area and process area. Used for transferring parameters in master-slave system. The 6 words are as below:

PKE	IND	PWE1	PWE2	PCD1	PCD2

2. Only process area. Consist of control word (status word) and frequency. The 2 words are as below:

Process area (PZD)
3. Text area for reading/writing text through data area (used when reading/writing parameter P621-631):

- Definition of the control word for AC motor drive in PZD area:

Bit	Bit status $=0$	Bit status =1
00	-	Preset ref. Isb
01	-	Preset ref. msb
02	DC braking	-
03	Coasting stop	-
04	Quick stop	-
05	Freeze output frequency	-
06	Ramp stop	Start
07	-	Reset
08	-	JOG
09	No function	Data valid
10	Data not invalid	Activate relay 01
11	-	Activate relay 02
12	-	Choice of setup Isb
13	-	Choice of setup msb
14	-	Reversing
15	-	

- Definition of the status word for AC motor drive in PCD area

Bit	Bit status $=0$	Bit status $=1$
00	Trip	Control ready
01	-	Drive ready
02	-	Stand by
03	No trip	Trip
04	Not in use	
05	Not in use	
06	Not in use	Sparning
07	No warning	Serial comm. control
08	Speed \neq reference	-
09	Local operation	Operation indication
10	Out of frequency range	
11	Disable operation	Voltage warning high/low
12	No function	Current limit
13	-	Thermal warning
14	-	
15	-	

12. Communication Design Examples

MEMO

13.1 TRD/TWR/TCMP - Office Bell Timing Control

Control Purpose:

- There are 4 moments the office bell will ring: on-duty / off-duty time in the morning and on-duty / off-duty time in the afternoon. When the time is reached, the bell will ring immediately and last for 1 minute. Users can set the 4 moments and adjust the current time at any time.
- Set the ringing time and adjust the current time.

Devices:

Device	
M0	Adjust current time
M1	Start the office bell
Y0	Ring the office bell
D0~D6	Store the read Real Time Clock (RTC) data
D200~D206	Store the RTC data to be written in PLC
D300~D311	Store the on-duty / off-duty time

Control Program:

When M1 = ON, compare the current time in D4~D6 with the morning on-duty time set in D300~D302. If they are equal, M11 will be ON.

TCMP	D303	D304	D305	D4	M13

When M1 = ON, compare the current time in D4~D6 with the morning off-duty time set in D303~D305. If they are equal, M14 will be ON.

When M1 = ON, compare the current time in D4~D6 with the afternoon on-duty time set in D306~D308. If they are equal, M17 will be ON.

[^0]

Program Description:

- The value in D200~D206 and D300~D311 can be set by WPLSoft or HMI.
- To avoid the execution error of TWR instruction, the program uses [FMOV K1 D200 K4] instruction at the beginning. This program operates only the data of Hour/Minute/Second in D204~D206 but not the data of Year/Day/Month/Date in D200~D203. For TWR instruction, the setting range: 00~99 for Year, 1~7 for Day(Mon~Sun), 1~12 for Month and 1~31 for Date. If the values in D200~D203 are out of the above range, the program will regard it as an operation error and the instruction will not be executed and the Hour/Minute/Second data can't be written either. Therefore, the program sets the Year/Week/Month/Day to K1 to fit the above range and makes sure TWR instruction can be executed for writing in Hour/Minute/Second data.
- D4, D5 and D6 store the Hour/Minute/Second of the current time read form RTC.

13.2 TRD/TZCP - Control of Warehouse Automatic Door

Control Purpose:

- The opening hours of the warehouse are from 7:30~22:30, so the door should open at 7:30 and close at 22:30 automatically.
- There are 2 sets of control buttons(Open/Close) in the control room for opening or closing the door manually for special situations.

Devices:

Device	
$\mathrm{X0}$	Manual open button for door 1 .
X 1	Manual close button for door 1
X 2	Manual open button for door 2
X 3	Manual close button for door 2
X 4	Upper sensor of door 1.
X 5	Lower sensor of door 1.
X 6	Upper sensor of door 2.
X 7	Lower sensor of door 2.
Y 0	Motor of door 1 run forward to open the door
Y 1	Motor of door 1 run reverse to close the door
Y 2	Motor of door 2 run forward to open the door
Y 3	Motor of door 2 run reverse to close the door

Control Program:

Program Description:

- The program performs control of warehouse automatic door by a RTC Time Zone Compare instruction (TZCP). Through the Time Read instruction (TRD), the current time in RTC can be read in D0~D6. D4, D5 and D6 store the Hour/Min/Sec data.
- When $\mathrm{YO}=\mathrm{ON}$, the motor of door 1will run forward to execute opening action until upper sensor is activated ($\mathrm{X} 4=\mathrm{ON}$).
- When $\mathrm{Y} 1=\mathrm{ON}$, the motor of door 1 will run reverse to execute closing action until the lower sensor in activated ($\mathrm{X} 5=\mathrm{ON}$).
- The opening and closing actions of door 2 are the same with that of door 1.
- For some special situations, the opening and closing actions of door 1 and door 2 can also be performed by pressing manual open buttons (X0/X2) and manual close buttons (X1/X3) in the control room.

13.3 HOUR - Control of Switching Motors after a Long Time Running

Control Purpose:

- Controlling the automatic motor switching between main motor and auxiliary motor.

In some special applications, we use several motors running by turns to protect each motor and extend their service life. In this program, there are 2 motors running by turns in the cycle: 2 days (48 hours) for the main motor, then 1 day (24 hours) for the auxiliary motor.

Devices:

Device	
X0	Start/Stop of the motor
Y0	Starting the main motor
Y1	Starting the auxiliary motor
M10	M10 = ON when set time of the main motor reached
M11	M11 = ON when set time of the auxiliary motor reached
D0~D1	Storing the current running time of the main motor
D2~D3	Storing the current running time of the auxiliary motor

Control Program:

M11			When M11 = ON, RST M0 instruction will be executed for stopping the auxiliary motor and starting the main motor	
-1	RST	MO		
	ZRST	D2	D3	Clear the current running time of the auxiliary motor
	RST	M11	Reset M11	

Program Description:

- When $\mathrm{XO}=\mathrm{OFF}, \mathrm{YO}$ and $\mathrm{Y} 1=\mathrm{OFF}$, both main $/$ auxiliary motor will not run.
- When $\mathrm{XO}=\mathrm{ON}$, the running status of YO (main motor) and Y 1 (aux. motor) will be decided by the ON/OFF status of MO so as to control the two motors running in turns.
- For main motor, D0 and D1 record the current time measured in hour and the current time that is less than an hour ($0 \sim 3599 \mathrm{~s}$). For auxiliary motor, D2 and D3 record the current time measured in hour and the current time that is less than an hour ($0 \sim 3599 \mathrm{~s}$).
- 16-bit instruction supports the set time up to 32,767 hours and 32 -bit instruction supports the set time up to $2,147,483,647$ hours.
- The timer will go on timing after the set time is reached. For restart timing, users need to clear the current time stored in D0~D3 and reset flag M10 and M11.

13. Real Time Calendar Time Design Examples

MEMO

14.1 Simple positioning Demonstration System of Delta ASDA series AC servo Drive

Control Purpose:

- Building a simple demonstrating system of position control by the application of Delta PLC and Delta ASDA servo drive.
- Performing Zero Return, Drive to Increment and Drive to Absolute through pulse sending of PLC.

Devices:

Device	
M0	Zero return switch
M1	Switch of running forward for 10 rotations
M2	Switch of running reverse for 10 rotations
M3	Switch of absolute designation: 400,000
M4	Switch of absolute designation: -50,000
M10	Servo ON switch
M11	Error reset switch
M12	Switch of stopping pulse output.
M13	Switch of Emergency stop
X0	Forward limit sensor
X1	Reverse limit sensor
X2	DOG signal sensor
X3	Receiving Servo Ready signal (corresponding to M20)
X4	Receiving At Zero Speed signal (corresponding to M21)
X5	Receiving Homing Completed signal (corresponding to M22)
X6	Receiving At Positioning Completed signal (corresponding to M23)
X7	Receiving Alarm Enabled signal (corresponding to M24)

14. Simple Positioning Design Examples

Y0	Pulse output
Y1	Forward / Reverse direction control
Y4	Clear pulse register of servo
Y6	Servo ON
Y7	Error reset
Y10	Forward inhibit limit
Y11	Reverse inhibit limit
Y12	Emergency stop
M20	Servo ready
M21	At zero speed
M22	Homing completed
M23	At positioning completed
M24	Alarm enabled

Parameter Settings for ASD-A AC Servo Drive:

Parameter	Set value	Function
P0-02	2	Drive Status
P1-00	2	External pulse input type: Pulse+ Direction
P1-01	0	Control Mode and Output Direction
P2-10	101	Digital Input Terminal 1 (DI1)
P2-11	104	Digital Input Terminal 2 (DI2)
P2-12	102	Digital Input Terminal 3 (DI3)
P2-13	122	Digital Input Terminal 4 (DI4)
P2-14	123	Digital Input Terminal 5 (DI5)
P2-15	121	Digital Input Terminal 6 (DI6)
P2-16	0	Digital Input Terminal 7 (DI7)
P2-17	0	Digital Input Terminal 8 (DI8)
P2-18	101	Digital Output Terminal 1 (DO1)
P2-19	103	Digital Output Terminal 2 (DO2)
P2-20	109	Digital Output Terminal 3 (DO3)
P2-21	105	Digital Output Terminal 4 (DO4)
P2-22	107	Digital Output Terminal 5 (DO5)

※ If AC servo drive can not run normally due to improper parameters, users can set P2-08 = 10 (factory defaults) and then set the parameters according to the above table.

Wiring for PLC and AC Servo Drive:

Control program:

Program Description:

- The M devices work as switches and status display can be designed by Delta DOP-A HMI or WPLSoft program.
- Power up servo drive, X 3 will be ON (servo ready) if there is no alarm signal. Press servo ON switch and M10 will be ON to activate Y6 (Servo ON)
- When zero return switch $\mathrm{MO}=\mathrm{ON}$, servo drive will execute zero return action. When DOG signal sensor is activated, servo drive will switch the current speed to JOG speed of 5 KHz . When X 2 is OFF, servo motor will stop running immediately and zero return is completed.
- When the switch of 10 rotations forward is pressed ($\mathrm{M} 1=\mathrm{ON}$), servo motor will execute Drive to Increment instruction and stop after running forward for 10 rotations.
- When the switch of 10 rotations reverse is pressed $(\mathrm{M} 2=\mathrm{ON})$, servo motor will execute Drive to Increment instruction and stop after running reverse for 10 rotations.
- When the switch of absolute designation 40,0000 is pressed ($\mathrm{M} 3=O N$), servo motor will execute Drive to Absolute instruction and stop after positioning completed.
- When the switch of absolute designation -50,000 is pressed ($\mathrm{M} 4=\mathrm{ON}$), servo motor will execute Drive to Absolute instruction and stop after positioning completed.
- If the processing device touches the forward limit sensor ($\mathrm{X0} 0=\mathrm{ON}, \mathrm{Y} 10=\mathrm{ON}$), servo motor will stop and the alarm will be enabled ($\mathrm{M} 24=\mathrm{ON}$).
- If the processing device touches the reverse limit sensor ($\mathrm{X} 1=\mathrm{ON}, \mathrm{Y} 11=\mathrm{On}$), servo motor will stop and the alarm will be enabled ($\mathrm{M} 24=\mathrm{ON}$).
- If servo alarm is enabled, press error reset switch M11 to clear the alarm. Once the alarm is cleared, the program can resume positioning actions.
- When the switch of stopping pulse output is ON (M12 = ON), PLC pulse output will be paused and the number of the output pulses will be stored in the register. When M12 = OFF, PLC will resume pulse output from the number of stored pulses.
- Press emergency stop switch ($\mathrm{M} 13=\mathrm{ON}$), and AC servo drive will stop immediately. When M13 = OFF, for positioning, servo drive will not complete remaining distance.
- M1346 in the program is used for clearing the pulse register after zero return is completed. When M1346 activated, Y4 of PLC will send a 20 ms pulse to clear pulses so as to display 0 on the servo panel (corresponding to servo parameter: $\mathrm{P} 0-02$, set as 0)
- M1029 in the program is used for resetting M0~M4 to ensure that every positioning instruction can be executed properly.

14.2 Draw DELTA LOGO by 2-axis Synchronous Motion

Control Purpose:

- Executing Drive to Absolute (DDRVA) and 2-axis synchronous motion instructions (DPPMA and DPPMR) to draw DELTA LOGO.
- Executing DDRVA instruction to control the up/down movement of the pen on the $3^{\text {rd }}$ axis.
- The locus is as follows:
- $\mathrm{PO}(0,0)$ The origin

Devices:

Device	Function
XO	When $\mathrm{X0}=\mathrm{ON}$, 2-axis synchronous motion is enabled.
YO	X axis pulse output device

14. Simple Positioning Design Examples

Device	Function
Y1	X axis direction signal output device
Y2	Y axis pulse output device
Y3	Y axis direction signal output device
Y4	The 3 $^{\text {rd }}$ axis pulse output device
Y5	The 3 $^{\text {rd }}$ axis direction signal output device
D0	Drawing steps
D10	Parameter setting

Control Program:

Program Description:

- When $\mathrm{X0}=\mathrm{ON}$, the content in $\mathrm{DO}=1,2$-axis synchronous motion will be enabled to draw DELTA LOGO.

Step 1: Lift up the pen on the 3rd-axis. Move it from P0 to P1.
Step 2: Put down the pen at $P 1$. Draw with the following locus: $P 1 \rightarrow P 2 \rightarrow P 3 \rightarrow P 1$. Lift up the pen and the triangle is completed.

Step 3: Move the pen from P1 to P4 and put down the pen at P4. Draw with the following locus: $\mathrm{P} 4 \rightarrow \mathrm{P} 5 \rightarrow \mathrm{P} 6 \rightarrow \mathrm{P} 7 \rightarrow \mathrm{P} 4$. Lift up the pen and the ellipse is completed.

Step 4: Move the pen from P4 to P8 and put down the pen at P8. Draw with the following locus: $\mathrm{P} 8 \rightarrow \mathrm{P} 9 \rightarrow \mathrm{P} 10 \rightarrow \mathrm{P} 11 \rightarrow \mathrm{P} 8$. Lift up the pen and the circle is completed and DELTA logo is accomplished.

- M1036 is the flag for indicating the completion of pen movement on $3^{\text {rd }}$ axis. When $\mathrm{M} 1036=$ ON, the program will execute next step.
- M1029 is he flag for indicating the completion of pen movement on X/Y axis. When M1029 = ON, the content in DO will increase by 1 and the program will enter next step.

15.1 ALT - Auto Blackboard Cleaner

Control Purpose:

- Controlling the auto cleaner to move left / move right when Clean is pressed.
- When the auto cleaner touches the limit switches of left side or right side, the cleaner will stop. Next time when Clean is pressed again, the cleaner will move to the opposite direction.

Devices:

Device	Function
X 0	$\mathrm{X} 0=$ ON when Clean is pressed.
X 1	$\mathrm{X} 1=$ ON when left side limit switch is touched.
X 2	$\mathrm{X} 2=$ ON when right side limit switch is touched.
Y 0	Move left
Y 1	Move right

Control Program:

Program Description:

- When Clean is pressed, X0 will be activated one time to execute ALT instruction. M0 will be ON , the cleaner will move left until it touches the left side limit switch. $\mathrm{X} 1=\mathrm{ON}$, and Y 0 will

15. Handy Instruction Design Examples

be OFF. The cleaner will stop working.

- When Clean is pressed again, X0 will be activated again to switch the ON status of MO to be OFF. Therefore, Y 1 will be ON and the cleaner will move right until it touches the right side limit switch. $\mathrm{X} 2=\mathrm{ON}$, and Y 1 will be OFF. The cleaner will stop at the current position.
- Wherever the location of the cleaner is, the cleaner will move to the opposite direction every time when Clean is pressed.

15. Handy Instruction Design Examples

15.2 RAMP - Ramp Control of Crane

Control Purpose:

- The load of the crane is quite big, so the motor requires ramp up and ramp down control during gradual start as well as gradual stop process.
- Apply Delta analog output MPU DVP10SX to generate voltages of $0 \sim 10 \mathrm{~V}$ for controlling the frequency of $A C$ motor drive, and the drive will output variable frequency current to control rotation speed of the crane motor.

Devices:

Device	
X 0	$\mathrm{X} 0=$ ON when Up is pressed.
X 1	$\mathrm{X} 1=$ ON when Down is pressed.
X 2	$\mathrm{X} 2=$ ON when Stop is pressed.
Y 0	Motor running forward (Lifting goods)
Y 1	Motor running reverse (Landing goods)

Control Program:

Send the content in D2 to D1116. The content in D1116 determines the output voltage and the current in the first analog output channel of DVP10SX PLC

Program Description:

- This program applies to PLCs with analog output function, such as DVP20EX and DVP10SX series MPU. In DVP10SX, when the content in D1116 changes from K0 to K2000, the output voltage of the first channel will vary from 0 to 10 V .
- The parameter of RAMP instruction is directly related to the scan cycle, so users should set the scan cycle at the start of the program first, then the duration of ramp signal can be fixed.

In this program, the scan cycle is fixed as 20 ms and the scan times of RAMP instruction are 100. Therefore the ramp duration is 2 s .

- When the button Up is pressed $(\mathrm{MO}=\mathrm{ON})$, the crane will perform gradual start to lift goods and the voltage output will increase from 0 to 10 V in 2 s . When the crane reaches the target height, operator can press the button Stop ($\mathrm{M} 2=\mathrm{ON}$) to execute gradual stop. The voltage output will decrease from 10 to 0 V in 2 s . The process is as follows:

- The goods landing process also requires the same ramp up (gradual start) and ramp down (gradual stop) duration.
- The frequency of AC motor drive is in proportion to the output voltage of PLC. For example, the frequency of Delta VFD-M series AC motor drive varies from 0 to 60 Hz while the output voltage of DVP10SX varies from 0 to 10 V . In addition, the motor rotation speed is in proportion to the frequency of drive. Therefore, gradual start and gradual stop can be performed by controlling the variation of output voltage on DVP10SX.

15. Handy Instruction Design Examples

15.3 INCD - Traffic Lights Control (Incremental Drum Sequencer)

Control Purpose:

- Performing traffic lights sequence control at the intersection. In both vertical and horizontal directions, the traffic lights are set as the following sequence: Red lights ON for 60s, Yellow lights ON for 3 s and green lights ON for 52 s and green lights flashing for 5 s.
- The timing diagrams are as follows:

15. Handy Instruction Design Examples

Devices:

Device	Function
X1	Switch of the traffic lights control program
Y0	Red light (vertical)
Y1	Yellow light (vertical)
Y2	Green light (vertical)
Y10	Red light (horizontal)
Y11	Yellow light (horizontal)
Y12	Green light (horizontal)

Control Program:

15. Handy Instruction Design Examples

Program Description:

- "Incremental Drum Sequencer" is a concept performing repetitive step-by-step process. In this program, when present value in counter C0 reaches the set value in D 500~D505, the corresponding output devices M100~M105 will be ON and counter C0 will be reset for executing next step.
- In order to simplify the program, INCD (Incremental Drum Sequencer) instruction is used here to control the traffic lights.
- Before the execution of INCD instruction, use MOV instruction to write all the set values into D500 ~ D505 in advance.

Set value	Output device	Set value	Output device
D500 $=52$	M100	D503 $=52$	M103
D501 $=5$	M 101	D504 $=5$	M 104
D502 $=3$	M 102	D505 $=3$	M 105

15. Handy Instruction Design Examples

15.4 ABSD - Adding Materials in Different Intervals (Absolute Drum Sequencer)

Control Purpose:

- Adding A, B, C materials for production during specified intervals within 60 sec.
- Adding material A in the intervals of $10 \mathrm{~s} \sim 20 \mathrm{~s}, 30 \mathrm{~s} \sim 40 \mathrm{~s}$ and $50 \sim 55 \mathrm{~s}$, material B in the interval of $0 \sim 10 s, 20 s \sim 25 s$ and $40 s \sim 50 s$, and material C in the interval of 20s~25s, 30s~35s and 40s~45s.

Devices:

Device	Function
X0	Switch of material adding control program
Y0	Adding material A
Y1	Adding material B
Y2	Adding material C

Control Program:

Program Description:

- "Absolute Drum Sequencer" is a concept performing repetitive process consists of multiple steps which could be executed in the same interval. In this program, when present value in counter C0 reaches the set value in D 500~D517, the corresponding output devices M100~M108 will be ON to execute specified actions within single interval.
- Before the execution of ABSD instruction, use MOV instruction to write all the set values into

D500 ~ D517 in advance.

Set value	Output device	Set value	Output device
$D 500=10$	$M 100$	$D 509=25$	M104
$D 501=20$	$M 100$	$D 510=40$	M105
$D 502=30$	M101	$D 511=50$	M105
$D 503=40$	$M 101$	$D 512=20$	M106
$D 504=50$	$M 102$	$D 513=25$	M106
$D 505=55$	$M 102$	$D 514=30$	M107
$D 506=0$	$M 103$	$D 515=35$	M107
$D 507=10$	$M 103$	$D 516=40$	M108
$D 508=20$	$M 104$	$D 517=45$	M108

15.5 IST - Electroplating Process Auto Control

Control Purpose:

- Applying PLC on auto control process of PCB electroplating. There is a traveling crane equipped with a lifting hook in the production line. The hook has a clip for clipping and releasing the workpiece. The traveling crane and the lifting hook are controlled by 2 motors and a control panel. In addition, there are plating tank, recovery tank and rinse tank in the process of plating workpiece, recycling plating solution and cleaning workpiece.
- Process:

Clip the workpiece \rightarrow Put it in the plating tank for 280 minutes \rightarrow lift it to the upper-limit and stay for $28 \mathrm{~s} \rightarrow$ soak it in the recovery tank for 30 minutes \rightarrow lift it to the upper-limit and stay for $15 \mathrm{~s} \rightarrow$ clean it in the rinse tank for $30 \mathrm{~s} \rightarrow$ lift it to the upper-limit and stay for $15 \mathrm{~s} \rightarrow$ put it on the conveyor belt.

- 3 operation modes:

Manual: select manual mode ($\mathrm{X} 10=\mathrm{ON}$) and enable/disable output devices by controlling corresponding switches (X20~X25).
Zero return: select zero return mode ($\mathrm{X} 11=\mathrm{ON}$) and press the zero return button X 15 to execute this function.

Auto: (Single step/One cycle/Continuous)

1. Single step operation: select Single step (X12 = ON). Execute one step when pushing Auto start (X16) one time.
2. One cycle operation: select One cycle (X13 = ON). Press Auto start $(X 16)$ at the zero point and the program will execute one cycle of plating process. If Auto stop (X17) is pressed, the process will be stopped. The program will continue to finish the cycle if Auto start is pressed again.
3. Continuous operation: select Continuous $(\mathrm{X} 14=\mathrm{ON})$. Press Auto start $(\mathrm{X} 16)$ at the zero point and the program will perform continuous plating process for cycles until Auto stop (17) is pressed. If Auto stop is pressed, the program will finish the cycle and stop at zero point.

Devices:

Device	Function
X0	$\mathrm{X} 0=\mathrm{ON}$ when the left-limit switch is activated.
X1	$\mathrm{X} 1=\mathrm{ON}$ when the limit switch of plating tank is activated.
X2	X2 $=$ ON when the limit switch of recovery tank is activated.
X3	X3 $=$ ON when the limit switch of rinse tank is activated.
X4	X4 $=$ ON when the right-limit switch is activated.
X5	$\mathrm{X} 5=\mathrm{ON}$ when the upper-limit switch of lifting hook is activated.
X6	X6 = ON when the lower-limit switch of lifting hook is activated.
X10	X10 $=$ ON when Manual mode is selected
X11	X11 $=$ ON when Zero return mode is selected
X12	X12 $=$ ON when Single step mode is selected
X13	X13 = ON when One cycle mode is selected
X14	X14 $=$ ON when Continuous mode is selected
X15	X15 = ON when Zero return ON is pressed.
X16	X16 $=$ ON when Auto start is pressed.
X17	X17 $=$ ON when Auto stop is pressed.
X20	X20 $=$ ON when Hook up is pressed.
X21	X21 $=$ ON when Hook down is pressed.
X22	X22 = ON when Move left is pressed.
X23	X23 $=$ ON when Move right is pressed.
X24	X24 $=$ ON when Clip is pressed.
X25	X25 = ON when Release is pressed
Y0	Hook up
Y1	Hook down
Y2	Move right
Y3	Move left
Y4	Clipping

15. Handy Instruction Design Examples

Control Program:

15. Handy Instruction Design Examples

Program Description:

- The program uses Auto/Manual control instructions (IST) to perform auto control process of PCB electroplating. When IST instruction is applied, S10~S19 can not be used as general step points, but only can be used for zero return. When S0 ~S9 are in use, S0 ~S2 are specified for manual operation mode, zero return mode and auto operation mode. Therefore, the content of the 3 steps should be designed first in this program.
- When zero return mode is selected, no zero return action will occur if any step between S10 ~ S19 is ON. When auto mode is selected, no action will occur if any step in Auto mode is ON or if M1043 is ON.

15. Handy Instruction Design Examples

15.6 FTC - Fuzzy Temperature Control of the Oven

Control Purpose:

- The heating environment of the oven is "fast heating environment" (D13 = K16) and the target temperature is $120^{\circ} \mathrm{C}(\mathrm{D} 10=\mathrm{K} 1200)$. In order to get the best control results, the program uses FTC together with GPWM instructions to perform fuzzy temperature control.
- Apply DVP04PT-S temperature measurement module for measuring the present temperature of the oven and transferring the result to DVP12SA. After execution of FTC instruction, PLC outputs the operation results in D22 to the input of GPWM instruction. GPWM instruction outputs width modulatable pulses (width determined by D22) by Y0 to control the heater and fuzzy temperature control of the oven is completed.

Devices:

Device	
M1	Function
Y0	PWM Pulse output device
D10	Storing the target temperature
D11	Storing the present temperature
D12	Storing FTC sampling time parameter
D13	Storing FTC temperature control parameter
D22	Storing the operation results of FTC instruction
D30	Storing the pulse output cycle of GPWM instruction

Control Program:

Program Description:

- FTC instruction is a handy instruction exclusively designed for temperature control. Unlike the large amount of parameters required by PID instruction, users only need to set a few parameters.
- Format of FTC instruction:

FTC	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	D

$S_{1} \rightarrow$ Set value (SV) (Range:1~5000, shown as $0.1^{\circ} \sim 500^{\circ}$)
$\mathrm{S}_{2} \rightarrow$ Present value (PV) (Range:1~5000, shown as $0.1^{\circ} \sim 500^{\circ}$)
$S_{3} \rightarrow$ Parameter (Users need to set parameters S_{3} and $S_{3}+1$)
$\mathrm{D} \rightarrow$ Output value (MV) (Range: $0 \sim \mathrm{~S}_{3}{ }^{*} 100$)

- Setting of S_{3} and $S_{3}+1$:

Device	Function	Range
S_{3}	Sampling time (Ts)	1~200 (unit: 100ms)
$\mathrm{S}_{3}+1$	b0: temperature unit b1: filter function b2: heating environment b3~b15: reserved	b0 $=0$ means ${ }^{\circ} \mathrm{C} ; \mathrm{b0}=1$ means $^{\circ} \mathrm{F}$
		b1 = 0 means without filter function; b1 $=1$ means with filter function
		b2 $=1$ Slow heating environment
		$\mathrm{b} 3=1$ General heating environment
		$\mathrm{b} 4=1$ Fast heating environment
		$\mathrm{b} 5=1$ High-speed heating environment

- In practical application, users usually need to adjust S_{3} and $S_{3}+1$ several times to get the best control results. The basic rules are as follows:

1. Sampling time should be set to 2 times more than the sampling time of the temperature sensor, generally between $2 \mathrm{~s} \sim 6 \mathrm{~s}$.
2. The cycle time of GPWM instruction is the same with the sampling time of FTC instruction, but the unit for GPWM cycle time is 1 ms .
3. Properly decrease SV of the sampling time if the control duration is too long.
4. Properly increase SV of the sampling time if the fluctuations occur frequently.
5. "General heating environment" $(b 3=1)$ is the default setting for the heating

15. Handy Instruction Design Examples

environment (bit2~bit5 of $S_{3}+1$).
6. Select "slow heating environment" $(b 2=1)$ if the control duration is too long.
7. Select "fast heating environment" ($b 4=1$) if overheating or fluctuations occur.

- Adjustment of parameters S_{3} and $S_{3}+1$:

Assume parameters S_{3} and $\mathrm{S}_{3}+1$ of FTC instruction are set as D12 $=\mathrm{K} 60(6 \mathrm{~s}), \mathrm{D} 13=\mathrm{K} 8$ (b3 = 1) and pulse output cycle time of GPWM instruction is set as D30 = K6000 (= D12*100), the curve for the control is shown as the below diagram:

As shown in the diagram above, we can see that after about 48 minutes, the temperature is able to reach the target temperature with $\pm 1^{\circ} \mathrm{C}$ accuracy and exceed approx. $10^{\circ} \mathrm{C}$ of the target temperature. Due to that the temperature once exceeds the target temperature, we modify the heating environment into "fast heating environment", i.e. D13 = K16 (b4 = 1). The results are shown in the diagram below.

From the diagram above, we see that though the temperature no longer exceeds the target
temperature, it still needs to take more than 1 hour and 15 minutes to reach the target temperature with $\pm 1{ }^{\circ} \mathrm{C}$ accuracy. It seems that we have chosen the right environment, but the sampling time is too long, resulting in the extension of heating time. Therefore, we modify the sampling time to 2 seconds, i.e. D12 = K20 (2s) and D30 = K2000 (= D12*100). The results are shown in the diagram below.

From the diagram above, we see that the control system becomes too sensitive and leads to up and down fluctuations. Therefore, we modify the sampling time to 4 s , i.e. D12 $=$ K40 (4s) and D30 $=$ K4000 (= D12*100). The results are shown in the diagram below.

From the diagram above, we see that the overall control time has been shorten as 37 minutes and no exceeding or fluctuations occur. The basic requirements of the control system are satisfied.

15. Handy Instruction Design Examples

15.7 PID - Oven Temperature Control (Auto-tuning for PID Temperature Control)

Control Purpose:

- Execute auto-tuning function of PID instruction to control the temperature of the oven when the oven is in unknown temperature environment. The target temperature is $80^{\circ} \mathrm{C}$.
- Apply DVP04PT-S temperature module for measuring the present temperature of the oven and transferring the results to PLC. The PLC will execute parameter auto-tuning function (D204 = K3) to operate the best PID parameters and automatically change the control direction as "Exclusively for the adjusted temperature control" (D204 = K4).
- PLC outputs the operation results (adjusted parameter) in D0 to the input of GPWM instruction. Y0 will output PWM pulses (width determined by D0) to control the heater and PID temperature control is accomplished.

Devices:

Device	
M1	Executing PID instruction
Y0	Outputting adjustable pulses
D0	Storing PID operation result
D10	Storing the target temperature
D11	Storing the present temperature
D20	Storing pulse output cycle of GPWM instruction
D200	Storing PID sampling time parameter

Control Program:

Program Description:

- Format of PID instruction:

PID	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	D

$\mathrm{S}_{1} \rightarrow$ Set value (SV)
$\mathrm{S}_{2} \rightarrow$ Present value (PV)
$\mathrm{S}_{3} \rightarrow$ Parameter (Users need to set and adjust it. For the definition, refer to PID parameter table in the last part of this example)
$D \rightarrow$ Output value (MV) (D has to be the data register area with latched function)

- There are a lot of circumstances where PID instruction can be applied; therefore, please choose the control functions appropriately. In this example, the parameter auto-tuning for temperature is only for the temperature control, users cannot use it in a speed or pressure control environment or errors could occur.
- Generally, adjusting control parameters of PID requires experience and repetitive tests. (except the auto-tuning function in temperature control environment) The common parameter adjusting steps are as below:
Step 1: Set K_{I} and K_{D} as 0 and K_{P} as 5, 10, 20 and 40 . Record the $S V$ and PV respectively and the results are as the figure below.

Step 2: From the figure, we can see that when $K_{P}=40$, there will be over-reaction, so we will not select it. When $K_{P}=20$, the PV reaction curve will be close to SV and there will not be over-reaction, but due to its fast start-up with big transient MV, we will consider to put it aside. When $K_{P}=10$, the $P V$ reaction curve will get close to $S V$ value more smoothly, so we will use it. Finally when $K_{P}=5$, we will not consider it due to the slow reaction.

Step 3: Select $K_{P}=10$ and adjust K_{1} from small to big (e.g. 1, 2, 4 to 8). K_{1} should not be bigger than K_{P}. Adjust K_{D} from small to big (e.g. $0.01,0.05,0.1$ and 0.2). K_{D} should not exceed 10% of K_{P}. Finally we obtain the figure of PV and SV below.

Note: This example is only for your reference. Please adjust your parameters to proper ones according to your actual condition of the control system.

- In the temperature control environment, Delta PLC provides auto-tuning on parameters of PID instruction, so users can get good control results without parameter adjusting steps . See below for the auto-tuning process in this example:

1. Initial adjustment. Operate the most suitable parameter for PID temperature control and store the result in D200~D219. See the reaction curve below:

2. Use the adjusted parameter in D200~D219 to control temperature. The curve becomes as below:

From the figure above, we can see that the temperature control after auto-tuning is working fine and we use only approximately 20 minutes for the control.

- PID sampling time should be set the same with the cycle time of GPWM instruction, but its unit is 10 ms , which is different from the unit 1 ms of GPWM instruction.
- Sampling time of PV should be set to 2 times more than the sampling time of PID, generally between $2 \mathrm{~s} \sim 6 \mathrm{~s}$.
- PID parameter table of S3 for 16-bit instruction:

Device No.	Function	Range	Explanation
S_{3} :	Sampling time (T_{s}) (unit: 10ms)	$\begin{aligned} & \text { 1~2,000 } \\ & \text { (unit: } 10 \mathrm{~ms} \text {) } \end{aligned}$	If T_{S} is less than 1 program scan time, PID instruction will be executed for 1 program scan time. If $T_{s}=0$, PID instruction will not be enabled. The minimum T_{s} has to be longer than the program scan time.
($3_{3}+1$:	Proportional gain $\left(K_{P}\right)$	0~30,000 (\%)	If SV is bigger than the max. value, the output will be the max. value.
($\mathbf{S}_{3}+2$:	Integral gain (K_{l})	0~30,000 (\%)	
($3_{3}+3$:	Differential gain (K_{D})	$\begin{aligned} & \hline-3,000 \sim 30,000 \\ & (\%) \end{aligned}$	
(S3) +4 :	Control direction (DIR)	0: automatic control 1: forward control ($\mathrm{E}=\mathrm{SV}-\mathrm{PV}$) 2: inverse control ($E=P V-S V$) 3: Auto-tuning of parameter exclusively for the temperature control. The device will automatically become K4 when the auto-tuning is completed and be filled in with the appropriate parameter K_{P}, K_{I} and K_{D} (not available in the 32-bit instruction). 4: Exclusively for the adjusted temperature control (not available in the 32-bit instruction). 5: automatic control(with upper/lower bounds of integral value). Only supported by SV_V1.2 / EH2_V1.2 / SA / SA_V1.8 / SC_V1.6 or higher version PLC.	

15. Handy Instruction Design Examples

(${ }_{3}+5$:	The range that error value (E) doesn't work	0~32,767	Ex: when $\mathrm{S} 3+5$ is set as 5 , MV of E between -5 and 5 will be 0 .
(${ }_{3}+6$:	Upper bound of output value (MV)	-32,768~ 32,767	Ex: if $S 3+6$ is set as 1,000 , the output will be 1,000 when MV is bigger than 1,000 . S3 +6 has to be bigger or equal S3 +7 ; otherwise the upper bound and lower bound will switch.
(${ }_{3}+7$:	Lower bound of output value (MV)	-32,768~ 32,767	Ex: if $\mathrm{S} 3+7$ is set as $-1,000$, the output will be $-1,000$ when MV is smaller than $-1,000$.
S3 +8:	Upper bound of integral value	-32,768~ 32,767	Ex: if $S 3+8$ is set as 1,000 , the output will be 1,000 when the integral value is bigger than 1,000 and the integration will stop. $\mathrm{S} 3+8$ has to be bigger or equal $S 3+9$; otherwise the upper bound and lower bound will switch.
(${ }_{3}+9$:	Lower bound of integral value	-32,768~ 32,767	Ex: if S3 +9 is set as $-1,000$, the output will be $-1,000$ when the integral value is smaller than $-1,000$ and the integration will stop.
($\mathbf{S}_{3}+10,11$:	Accumulated integral value	32-bit floating point	The accumulated integral value is only for reference. You can still clear or modify it (in 32-bit floating point) according to your need.
S3 +12:	The previous PV	-	The previous PV is only for reference. You can still modify it according to your need.
$\begin{gathered} \left(\boldsymbol{S}_{3}+13:\right. \\ \text { l } \\ \text { l } \\ \boldsymbol{S}_{3}+19: \end{gathered}$	For system use only.		

- When parameter setting exceeds its range, the upper bound and lower bound will become the setting value. However, if the motion direction (DIR) exceeds the range, it will be set to 0 .
- The maximum error of sampling time TS = - (1 scan time + 1ms) ~ + (1 scan time). When the error affects the output, please fix the scan time or execute PID instruction in the interruption subroutine of the timer.
- PV of PID instruction has to be stable before the execution of PID instruction. If you are to extract the input value of DVP04AD/04DA/06XA/04PT/04TC for PID operation, please be aware of the A/D conversion time of these modules.

16.1 Ethernet Connection

Control Purpose:

- Setting up network parameters of DVPEN01-SL directly on the PC
(1) IP of PC executing WPLSoft: 192.168.0.3
(2) Subnet mask: 255.255.255.0; Gateway: 192.168.0.1
(3) Set IP of PLC_A: 192.168.0.4; PLC_B: 192.168.0.5
(4) Connect the PC and DVPEN01-SL by RJ-45 cable

Note: Both PC and DVPEN01-SL have to adopt static IP.

- Writing the time of RTC in PLC_B into D0 ~ D6 of PLC_A
(1) Adopting static IP 。
(2) IP of PLC_A: 192.168.0.4
(3) IP of PLC_B: 192.168.0.5
(4) Update form PLC_B to PLC_A

Devices:

Device	Function
M1013	1s clock pulse
PLC_B M1	Write the data into DVPENO1-SL module
PLC_B M2	Check if data exchange is successfully executed.

Settings:

- Select Communication Setting in WPLSoft.

- Select Ethernet in connection setup and click OK.

- Click Auto-Search icon to search for all DVPENO1-SL modules in the network.

- Designate a DVPEN01-SL and double click to open the setup page.

\% Della WPLLSoft	- $\square^{\text {x }}$

- The setup window will appear as below.

- Switch to Data Exchange window.

- Check Enable Data Exchange box. Enter IP address of PLC_A :192.168.0.4 in No. 1 Data Exchange Host IP column. Click OK to complete the setting.

Control Program:

- Program of PLC_A:

- Program of PLC_B:

Program Description:

- Program of PLC_A:
(1) The received data are stored in CR\#49 ~ CR\#55.
(2) The data received every one second are written into D0 ~ D6.
- Program of PLC_B:
(1) The data exchange will be executed every one second.
(2) Write the communication address of the destination PLC in CR\#28, and DVPEN01-SL will automatically detect by the previous setting that No. 1 IP is "192.168.0.4".
(3) Write the data of RTC into CR\#29 ~ CR\#355.
(4) Write " 1 " into CR\#13 to start the data exchange.
(5) CR\#14 $=2$ refers to exchange completed. CR\#14 $=3$ refers to exchange failed.
- For more instructions of ethernet communication module DVPEN01-SL, please refer to DVP-PLC Application Manual: Special Modules II

16. Network Connection Design Examples

16.2 DeviceNet connection

Control Purpose:

- When $\mathrm{MO}=\mathrm{ON}$, read the contenct of DNA02: Class $1 \gg$ Instance $1 \gg$ Attribute 1.

Devices:

- DVPDNET-SL settings:

Parameter	Set value	Explanation
Node address	00	Set the node address of DVPDNET-SL to "00".
Baud rate	500 kbps	Set communication speed of DVPDNET-SL and bus to 500kbps

- DNA02 settings:

Parameter	Set value	Explanation
Node address	02	Set the node address of DNA02 to "02".
Baud rate	500 kbps	Set the communication speed of DNA02 and bus to 500kbps.

- VFD-B parameter settings:

Parameter	Set value	Explanation
$02-00$	04	The main frequency is operated on RS-485 interface.
$02-01$	03	The operation commands are operated on the communication interface. Operation by keys is valid.
$09-00$	01	Communication address of VFD-B: 01
$09-01$	03	Baud rate: 38,400
$09-04$	03	Modbus RTU mode. Data format <8, N, $2>$

- Explanations on devices:

PLC Devive		Content	Explanation															
		15	14	13	12	1110	9	8	7	6	5	4	3	2	1	0		
	D6250		0101Hex	ReqID $=01 \mathrm{Hex}$							Command $=01 \mathrm{Hex}$							
	D6251	0005Hex	Port $=00 \mathrm{Hex}$							Size $=05 \mathrm{Hex}$								
Request	D6252	0E02Hex	Service Code $=0 \mathrm{EHex}$							MAC ID $=02 \mathrm{Hex}$								
message	D6253	0001Hex	High bye ot Class ID = 00Hex							Low byte of Class ID $=01 \mathrm{Hex}$								
	D6254	0001Hex	High byte of Instance ID = 00Hex							Low byte of Instance ID = 01Hex								
	D6255	0001Hex	N/A							Attribute ID $=01 \mathrm{Hex}$								
$\begin{gathered} \text { Response } \\ \text { message } \\ \text { editing area } \end{gathered}$	D6000	0101Hex	ReqID $=01 \mathrm{Hex}$							Status $=01 \mathrm{Hex}$								
	D6001	0002Hex	Port $=00 \mathrm{Hex}$							Size $=02 \mathrm{Hex}$								
	D6002	8E02Hex	Service Code $=8 \mathrm{EHex}$							MAC ID = 02Hex								
	D6003	031FHex	High byte of Service Data = 03Hex							Low byte of Service Data = 1FHex								

PLC device	Function
M0	When M0 = ON, DVPDNET-SL will send out request message

Control Program:

Program Description:

- In the beginning of the program, clear the response message editing area and request message editing area.
- When MO = ON, DVPDNET-SL will send out request message, reading Class $1 \gg$ Instance $1 \gg$ Attribute 1 of the target equipment (node address: 02). If the communication of explicit message is successful, the slave will return with a response message.
- When M0 = ON, DVPDNET-SL will only send out request message once. If you would like it to send out request message again, you will have to change ReqID.
- When the reading is successful, the message responded from the target equipment will be stored in D6000 ~ D6003.
- For more instructions of DeviceNet communication module DVPDNET-SL, please refer to DVP-PLC Application Manual: Special Modules II.

16.3 CANopen Connection

Control Purpose:

- When M0 = ON, read the content of index 2021, sub index 4 (i.e. actual output value of AC motor drive) in COA02.

Devices:

- Settings of DVPCOPM-SL:

Parameter	Setting	Explanation
Node address	01	Set the node address of DVPCOPM-SL to "01".
Baud rate	1 M bps	Set the communication speed between DVPCOPM-SL and bus to "1M bps".

- Settings of COAO2:

Parameter	Setting	Explanation
Node address	02	Set the node address of COA02 to "02".
Baud rate	1 M bps	Set the communication speed between COA02 and bus to "1M bps".

- Settings of VFD-B:

Parameter	Setting	Explanation
$02-00$	04	The main frequency is operated by RS-485 interface.
$02-01$	03	The running command is operated by communication interface. Operation by keys is valid.
$09-00$	01	Communication address of VFD-B: 01

$09-01$	03	Baud rate: 38,400 bps
$09-04$	03	Modbus RTU mode, format $<8, \mathrm{~N}, 2>$

- Explanation on devices:

PLC device		content	Explanation													
		15	1413	12	1110	9	8	7	6	4	3	2	1	0		
SDO request message editing area	D6250		0101Hex	ReqID $=01 \mathrm{Hex}$						Command $=01 \mathrm{Hex}$						
	D6251	0004Hex	Reserved						Size $=04 \mathrm{Hex}$							
	D6252	0102Hex	Type $=01 \mathrm{Hex}$						MAC ID = 02 Hex							
	D6253	2021Hex	High byte of index $=20 \mathrm{Hex}$						Low byte of index $=21 \mathrm{Hex}$							
	D6254	0004Hex	Reserved						Sub index $=04 \mathrm{Hex}$							
SDO response message editing area	D6000	0101Hex	ReqID $=01 \mathrm{Hex}$						Status = 01 Hex							
	D6001	0006Hex	Reserved						Size $=06 \mathrm{Hex}$							
	D6002	4B02Hex	Type = 4B Hex						MAC ID = 02 Hex							
	D6003	2021Hex	High byte of index = 20 Hex						Low byte of index = 21 Hex							
	D6004	0004Hex	Reserved						Sub index $=04 \mathrm{Hex}$							
	D6005	0100 Hex	Datum1 = 01 Hex						Datum0 $=00 \mathrm{Hex}$							

0100 Hex in D6005 refers to the actual output frequency of the AC motor drive is 2.56 Hz .

PLC Device	Function
M0	When M0 $=$ ON, CANopen master will send out SDO request message

Control Program:

16. Network Connection Design Examples

Program Description:

- The program first reset the SDO request message editing area and SDO response message editing area.
 contents in index 2021, sub index 4 of the target equipment (at node address 02). If the communication is successful, the slave will return with the response message.
- When $\mathrm{MO}=\mathrm{ON}$, CANopen master will send out request message only once. If you would like it to send out messages again, you will have to change the ReqID.
- The messages returned from the target equipment are stored in D6000 ~ D6005.
- For more instructions of CANopen communication module DVPCOPM-SL, please refer to DVP-PLC Application Manual: Special Modules II.

16. Network Connection Design Examples

16.4 RTU-485 Connection

Control Purpose:

- The station No. of RTU-485 is 1 . Write H'0001 into CR\#6 of the $1^{\text {st }}$ special module. Max connectible special modules: 8; Max. DI/DO: 128 inputs and 128 outputs.

Devices:

- Explanation on devices:

PLC Device	Function
M0	When M0 $=$ ON, the master device will send out a request message to RTU-485
D1120	Storing COM2(RS-485) communication protocal
M1120	Retaining COM2(RS-485) protocol. Change of D1120 is invalid when M1120 = ON.
M1122	Sending request
M1127	Data receiving completed
M1129	Communication timeout
M1143	Selecting ASCII/RTU mode of COM2(RS-485). OFF: ASCII; ON: RTU

- Explanation on communication address:

Communication address	Devices	Attribute	Data type	Length
H'1600 ~ H'1630	$1^{\text {st }}$ special module: CR0 ~ CR48	Please refer to the CR attribute of each special module.	word	49
H'1640 ~ H'1670	$2^{\text {nd }}$ special module: CR0 \sim CR48		word	49
H'1680 ~ H'16B0	$3{ }^{\text {rd }}$ special module: CR0 \sim CR48		word	49
H'16C0 ~ H'16F0	$4^{\text {th }}$ special module: CR0 \sim CR48		word	49
H'1700 ~ H'1730	$5{ }^{\text {th }}$ special module: CR0 \sim CR48		word	49
H'1740 ~ H'1770	$6{ }^{\text {th }}$ special module: CR0 \sim CR48		word	49
H'1780 ~ H'17B0	$7{ }^{\text {th }}$ special module: CR0 \sim CR48		word	49
H'17C0 ~ H'17F0	$8^{\text {th }}$ special module: CR0 \sim CR48		word	49

Note:
Maximum 8 special modules are connectible to RTU-485. The first special module connected is the nearest one on the right side of RTU-485.

Control Program:

- The station No. of RTU-485 is " 1 ". Write "H'0001" into CR\#6 of the $1^{\text {st }} \mathrm{AI} / A O$ special module.

Program Description:

- Communication format should be set at the beginning of the program, and the protocal of Master and slave should be the same: 9600 , 7,E,1, ASCII.
- When $M 0=O N$, the sending request flag will be $O N$ and the master device will send out a request message to $\mathrm{RTU}-485$ and write $\mathrm{H}^{\prime} 0001$ into $\mathrm{CR} \# 6$ of the $1^{\text {st }} \mathrm{Ai} / \mathrm{AO}$ special module on the right side of RTU-485.
- For more instructions of communication module RTU-485, please refer to DVP-PLC Application Manual: Special Modules Π.

MEMO

Index

- Production Line Control

1.17 MC/MCR - Manual/Auto Control 1-21
1.18 STL Manual/Auto Control 1-24
2.1 Product Mass Packaging 2-1
2.2 Daily Production Record (16-bit Counting Up Latched Counter) 2-2
3.15 Auto Interruption Timer 3-25
9.1 ENCO/DECO - Encoding and Decoding 9-1
10.2 DHSCS - Cutting Machine Control 10-3
10.3 DHSZ/DHSCR - Multi-segment Coater Control 10-4
10.7 PLSR - Servo Motor Acceleration/Deceleration Control 10-11
11.1 Elementary Arithmetic for Integer and Floating Point 11-1
15.5 IST - Electroplating Process Auto Control 15-12

- Production Line Control - detecting

1.1 Normally Closed Contact in Series Connection 1-1
8.2 SFTL - Defective Product Detect 8-3
8.3 WSFL - Automatic Sorting Mixed Products 8-5
10.5 PLSY - Production Line Control Program 10-7

■ Motor Control

1.9 SET/RST - Latched and Unlatched Circuit...1-9
1.11 Conditional Control Circuit...1-12
1.15 Forward/Reverse Control for the Three-Phase Asynchronous Motor1-18
3.4 Sequential Delay Output (Starting 3 Motors Sequentially).. 3-4
3.8 Star-Delta Reduced Voltage Starter Control..3-11
13.3 HOUR - Control of Switching Motors after a Long Time Running13-6

- Servo Motor Control

2.5 A B-phase Pulse High-speed Counter .. 2-6
5.1 Recipe Setting by CJ Instruction..5-1
10.7 PLSR - Servo Motor Acceleration/Deceleration Control.. 10-11
12.4 Communication between PLC and Delta ASD-A Series AC Servo Drive................. 12-14
12.5 Communication between PLC and Delta ASD-A Series AC Servo Drive................. 12-18
12.10 LINK between PLC, Delta AC Motor Drive and AC Servo Drive 12-34
14.1 Simple positioning Demonstration System of Delta ASDA AC Servo Drive 14-1

■ AC Motor Drive Control

6.4 FMOV - Single Data Broadcasting ...6-5
12.1 Communication between PLC and Delta VFD-M Series AC Motor Drive12-5
12.2 Communication between PLC and Delta VFD-B Series AC Motor Drive12-8
12.3 Communication between PLC and Delta VFD-V Series AC Motor Drive 12-11
12.10 LINK between PLC, Delta AC Motor Drive and AC Servo Drive 12-34
12.13 Communication between Delta PLC and Siemens MM420 Frequency Inverter 12-45
12.14 Communication between Delta PLC and Danfoss VLT6000 Series Adjustable Frequency Drive 12-50

- Positioning Control

7.2 INC/DEC - Fine Tuning by JOG Control 7-3
7.3 NEG - Displacement Reverse Control 7-5
14.1 Simple positioning Demonstration System of Delta ASDA AC Servo Drive 14-1
14.2 Draw DELTA LOGO by 2-axis Synchronous Motion 14-6
Level Monitoring

3.6 Artificial Fishpond Water Level Monitoring System (Flashing Circuit). 3-7
5.2 Reservoir Level Control 5-3
6.2 ZCP - Water Level Alarm Control 6-3
9.5 ANS/ANR - Level Monitoring Alarm System 9-7

■ Temperature Control

9.7 SER - Room Temperature Monitoring 9-10
12.6 Communication between PLC and Delta DTA Temperature Controller 12-22
12.7 Communication between PLC and Delta DTB Temperature Controller 12-25
12.11 LINK between PLC, Delta DTA and DTB Temperature Controllers 12-38
15.6 FTC - Fuzzy Temperature Control of the Oven 15-18
15.7 PID - Oven Temperature Control (Auto-tuning for PID Temperature Control) 15-22
■ Indicator Control

1.13 Last-in Priority Circuit 1-15
3.1 Delay OFF Program 3-1
3.2 Delay ON Program 3-2
3.3 Delay ON/OFF Program 3-3
6.5 CML - Color Lights Flashing 6-7
8.1 ROL/ROR - Neon Lamp Design 8-1

- Material Mixing

1.16 Selective Execution of Programs 1-19
3.10 Automatic Liquids Mixing Control System 3-15
3.11 Automatic Coffee Maker 3-17
4.2 Parameter Setting for Product Recipe 4-3
6.1 CMP - Material Mixing Machine 6-1
15.4 ABSD - Adding Materials in Different Intervals (Absolute Drum Sequencer) 15-9
- Data Processing

9.2 SUM/BON - Checking and Counting the Number of " 1 " 9-3
9.3 MEAN/SQR - Mean Value and Square Root 9-4
9.4 MEMR/MEMW - File Register Access 9-5
9.6 SORT - Sorting Acquired Data 9-8
11.2 Elementary Arithmetic for Floating Point 11-4

- Communication

Introduction 12-1
12.1 Communication between PLC and Delta VFD-M Series AC Motor Drive 12-5
12.2 Communication between PLC and Delta VFD-B Series AC Motor Drive 12-8
12.3 Communication between PLC and Delta VFD-V Series AC Motor Drive 12-11
12.4 Communication between PLC and Delta ASD-A Series AC Servo Drive 12-14
12.5 Communication between PLC and Delta ASD-A Series AC Servo Drive 12-18
12.6 Communication between PLC and Delta DTA Temperature Controller 12-22
12.7 Communication between PLC and Delta DTB Temperature Controller 12-25
12.8 PLC LINK 16 Slaves and Read/Write 16 Data (Word) 12-28
12.9 PLC LINK 32 Slaves and Read/Write 100 Data (Word) 12-31
12.10 LINK between PLC, Delta AC Motor Drive and AC Servo Drive 12-34
12.11 LINK between PLC, Delta DTA and DTB Temperature Controllers 12-38
12.12 Controlling START/STOP of 2 DVP PLCs through Communication 12-41
12.13 Communication between Delta PLC and Siemens MM420 Frequency Inverter 12-45
12.14 Communication between Delta PLC and Danfoss VLT6000 Series Adjustable Frequency Drive 12-50

■ Network Connection

16.1 Ethernet Connection ..16-1
16.2 DeviceNet Connection 16-6
16.3 CANopen Connection ...16-9
16.4 RTU-485 Connection

16-12

■ Light Switch Control

1.2 Block in Parallel Connection ...1-2
1.8 Common Latched Circuit and SET/RST Instructions Application...............................1-8
1.10 Alternate Output Circuit (With Latched Function).. 1-10

■ Automatic Door Control

3.9 Automatic Door Control..3-13
13.2 TRD/TZCP - Control of Warehouse Automatic Door...13-3

- Real Time Calendar and Time Design Applications

2.4 24-hour Clock Operated by 3 Counters
13.1 TRD/TWR/TCMP - Office Bell Timing Control 13-1

- Parking Lot Entry Control

1.6 Interlock Control Circuit 1-6
1.14 Entry/Exit Control of the Underground Car Park 1-16

■ Traffic Lights Control

3.17 Traffic Lights Control 3-29
15.3 INCD - Traffic Lights Control (Incremental Drum Sequencer) 15-6
■ Product Testing Device Control

3.7 Burn-in Test System (Timing Extension) 3-9
6.3 BMOV - Multiple History Data Backup 6-4

- Alarm Control

5.3 Fire Alarm in the Office (Interruption Application).. 5-5
5.4 Auto Lock up System in the Supermarket (FOR ~ NEXT)

5-7

- Others
1.3 Rising-edge Pulse Output for One Scan Cycle .. 1-3
1.4 Falling-edge Pulse Output for One Scan Cycle .. 1-4
1.5 Latching Control Circuit.. 1-5
1.7 Automatic Parameter Initialization When Powered Up... 1-7
1.12 First-in Priority Circuit... 1-13
2.3 Products Amount Calculation (32-bit Counting Up/Down Counter)............................ 2-4
3.5 Pulse-Width Modulation .. 3-6
3.12 Automatic Urinal Flushing Control Program .. 3-19
3.13 Performing Accumulative Function with Normal Timer.. 3-21
3.14 Performing Teaching Function with Normal Timer .. 3-23
3.16 Interesting Fountain ... 3-27
4.1 Summation of Continuous D Registers ... 4-1
4.3 Controlling Voltage Output of 2 DVP-04DA by 8 VRs (Variable Resistors) 4-5
$6.6 \times C H$ - Exchanging the Upper and Lower 8 bits in a Register 6-8
6.7 DIP Switch Input and 7-segment Display Output ... 6-9
7.1 Accurate Pipe Flow Measurement .. 7-1
8.4 SFWR/SFRD - Room Service Call Control ... 8-8
10.1 REF/REFF - DI/DO Refreshment and DI Filter Time Setting 10-1
10.4 SPD - Wheel Rotation Speed Measurement... 10-6
10.6 PWM - Sprayer Valve Control Program... 10-9
15.1 ALT - Auto Blackboard Cleaner.. 15-1
15.2 RAMP - Ramp Control of Crane... 15-3

[^0]: When M1 = ON, compare the current time in D4~D6 with the afternoon off-duty time set in D309~D311. If they are equal, M20 will be ON.

