

Industrial Automation Headquarters

Delta Electronics, Inc. Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd. Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, P.R.C. 215200 TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd. 238 Min-Xia Road, Pudong District, ShangHai, P.R.C. 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc. Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. 1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'I (S) Pte Ltd. 4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd. Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas Delta Products Corporation (USA) Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A. Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: 55 11 3568-3855 / FAX: 55 11 3568-3865

Europe

Deltronics (The Netherlands) B.V. Eindhoven Office De Witbogt 20, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

DVP-0051720-01

*We reserve the right to change the information in this manual without prior notice.

DVP201/202/211LC-SL Load Cell Module Operation Manual

DVP201/202/211LC-SL Load Cell Module

Operation Manual

Table of Contents

Chap	pter 1 Introduction	
1.1	Principle of a Load Cell	1-2
1.2	Introduction of a Load Cell	1-2
1.3	Functional Specifications	1-2
Chap	pter 2 Dimensions and Profile	
2.1	Dimensions	2-2
2.2	Profile	2-2
2.3	Arrangement of the Terminals	2-3
2.4	Description of the Indicators	2-3
Chap	pter 3 Installation and Wiring	
3.1	Installation	3-2
3.1	1.1 Connecting a Load Cell Module to a DVP-SV series PLC	3-2
3.1	1.2 Installing a DVP-SV series PLC and a Load Cell Module on a	DIN
	rail	3-2
3.2	Communication	3-3
3.3	External Wiring	3-4
3.4	Selecting a Load Cell Sensor	3-6
Chap	pter 4 Control Registers	
4.1	Table of Control Registers	
4.2	Descriptions of the Control Registers	4-5
4.3	Descriptions of Functions	
4.3	3.1 Measuring a Net Weight	
4.3	3.2 Stability Check	4-10
4.3	3.3 Determining Zero	4-11
4.3	3.4 Filtering out Weights	4-11
4.3	3.5 Correspondence between Current Outputs and Weights	4-12
Chap	pter 5 Making Adjustment	
5.1	Steps in Adjusting Points	5-3

5.2	Example 1	5	- 4	4
5.3	Example 2	5	-!	5

Chapter 1 Introduction

Table of Contents

1.1	Principle of a Load Cell	1-2
1.2	Introduction of a Load Cell	1-2
1.3	Functional Specifications	1-2

Thanks for using the load cell module DVP201/202/211LC-SL. To ensure that the product is correctly installed and operated, users need to read the operation manual carefully before they use DVP201/202/211LC-SL.

- ✓ The operation manual provides functional specifications, and introduces installation, basic operation and setting, and the usage of DVP201/202/211LC-SL.
- ✓ DVP201/202/211LC-SL is an OPEN-TYPE device. It should be installed in a control cabinet free of airborne dust, humidity, electric shock and vibration. To prevent non-maintenance staff from operating DVP201/202/211LC-SL, or to prevent an accident from damaging DVP201/202/211LC-SL, the control cabinet in which DVP201/202/211LC-SL is installed should be equipped with a safeguard. For example, the control cabinet in which DVP201/202/211LC-SL is installed can be unlocked with a special tool or key. DO NOT touch any terminal when DVP201/202/211LC-SL is powered up.
- ✓ In order to prevent the product from being damaged, or prevent staff from being hurt, users need to read the operation manual carefully, and follow the instructions in the manual.

1.1 Principle of a Load Cell

If a metallic material undergoes tension or strain, it will become thin, and its electrical impedance will increase. If a metallic material is compressed, its electrical impedance will become small. A strain gauge adopting this principle is called a load cell. Such sensing device is able to convert physical pressure into electrical signals, and therefore it is widely used on occasions on which loads, tension and pressure need to be converted into electrical signals.

1.2 Introduction of a Load Cell

A load cell module provides 24-bit resolution applicable to 4-wire or 6-wire load cells with various eigenvalues. Therefore, its response time can be adjusted according to users' requirements. On this basis, the requirements of load application markets can be easily met. Besides, a DVP series PLC* can read data in a load cell module or write data to a load cell module by means of the instruction FROM/TO.

*: DVP-SV series PLCs, DVP-EH2-L series PLCs, DVP-SA2 series PLCs, and DVP-SX2 series PLCs support left-side extension modules.

DVP201/202/211LC-SL		
Load cell module	Voltage output	
Rated supply voltage/Power consumption	24 V DC (-15 to +20%)/5 W	
Static minimum/maximum voltage	20.4 V/28.8 V DC	
Dynamic minimum/maximum voltage	18.5 V/30.2 V DC	
Maximum current consumption	150 mA	
Input signal range	±200 mV DC	
Sensibility	+5 V DC +/-5%	
ADC resolution	24 bits	
Highest precision	0.04%	
Communication interface	RS-232, RS-485	
Applicable sensor type	4-wire or 6-wire load cell	
Expanding a temperature coefficient	≤ ± 20 ppm/K v. E	
Reducing a temperature coefficient to zero	≤ ± 0.1 µV/K	
Linearity error	≤ 0.015%	
Response time	2.5, 10, 16, 20, 50, 60, 100, 200, and 400ms	
Eigenvalue applicable to a load cell	0~1, 0~2, 0~4, 0~6, 0~20, 0~40 and 0~80 mV/V	

1.3 Functional Specifications

DVP201/202/211LC-SL		
Load cell module	Voltage output	
Maximum distance for	100 meters	
connecting a load cell	roo meters	
Maximum output current	5 V DC * 300 mA	
Allowable load	40~4,010 Ω	
Averaging weights	100	
Common-mode rejection ratio	>100 dP	
(CMRR @50/60 Hz)	2100 dB	
	Between a digital circuit and the ground: 500 V AC	
Isolation	Between an analog circuit and the ground: 500 V AC	
	Between an analog circuit and a digital circuit: 500 V AC	
	Load cell modules can be connected to the left side of a PLC. The	
Connecting to a DVP series PLC	modules connected to a PLC are numbered from 100 to 107 according to	
	the closeness to the PLC.	
Operation/Storage	Operation: 0~55°C (temperature), 5~95% (humidity), pollution degree 2	
Operation/Storage	Storage: -25~70°C (temperature), 5~95% (humidity)	
Vibration/Shack registered	International standards: IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2	
VIDIATION/SHOCK RESISTANCE	& IEC 68-2-27 (TEST Ea)	

		DVP211LC-SL		
		Electrical specifications for input	Electrical specifications for output	
		terminals	terminals	
Input/Output	terminal	X0, X1	Y0, Y1, Y2, Y3	
Туре		Digital input	Transistor	
Form		DC (sinking or sourcing)		
Specifications		Input current: 24 V DC, 5 mA	Voltage specifications: 5~30 V DC #1	
Input impedance		4.7 ΚΩ		
Maximum switch frequency		10 kHz	1 kHz	
Action loval	$\text{Off} \to \text{On}$	> 15 V DC		
Action level	$\textbf{On} \rightarrow \textbf{Off}$	< 5 V DC		
Response	$\text{Off} \to \text{On}$	< 20 µs	< 100 µs	
time	$\textbf{On} \rightarrow \textbf{Off}$	< 50 µs	< 150 µs	
Movimum	Resistive load		0.5 A/output (4 A/COM) ^{#2}	
	Inductive load		15 W (30 V DC)	
loau	Bulb		2.5 W (30 V DC)	

Note: In order to meet DIN 1319-1, an error needs to be less than or equal to 0.05% at 20 °C + 10 K. #1: UP and ZP should be connected to a 24 V DC power supply. The current that an output terminal consumes

is approximately 1 mA.

#2: In an NPN mode, ZP is used. In a PNP mode, UP is used.

MEMO

Chatper 2 Dimensions and Profile

Table of Contents

Dimensions	.2-2
Profile	.2-2
Arrangement of the Terminals	.2-3
Description of the Indicators	.2-3
	Dimensions Profile Arrangement of the Terminals Description of the Indicators

2.1 Dimensions

Unit: mm

2.2 Profile

1. Mounting hole	2. Mounting groove (35mm)
3. Extension port	4. I/O module clip
POWER indicator, RUN indicator, ERROR	MOTION indicator, LOOP indicator, DI (X0, X1)/DO
^{5.} indicator and L.V indicator	^{o.} (Y0-Y3) indicators
7. I/O terminals	8. RS-232 port
9. DIN rail clip	10. RS-485 port
11. Power input	

2.3 Arrangement of the Terminals

EXC+ EXC- SIG+ SIG- SEN+ SEN- SHD • •

DVP201LC-SL

EXC+ EXC- SIG+ SIG- SEN+ SEN- SHD • EXC+ EXC- SIG+ SIG- SEN+ SEN- SHD • •

DVP202LC-SL

EXC+ EXC- SIG+ SIG- SEN+ SEN- SHD AO+ AO- S/S X0 X1 UP ZP Y0 Y1 Y2 Y3

DVP211LC-SL

2.4 Description of the Indicators

Name	Color	Function
POWER indicator	Green	Displaying power
RUN indicator	Green	Displaying the status of the module
ERROR indicator	Red	Displaying an error
L.V indicator	Red	Showing that the voltage of the an external power is low
LOOP indicator	Green	Loop control
Motion indicator	Orange	Showing that measurement is stable
X0 indicator/X1 indicator	Red	Showing that X0/X1 is On/Off
Y0 indicator/Y1 indicator/ Y2 indicator/Y3 indicator	Red	Showing that Y0/Y1/Y2/Y3 is On/Off

MEMO

Chapter 3 Installation and Wiring

Table of Contents

3.1	Ins	tallation	3-2
3.1	.1	Connecting a Load Cell Module to a DVP-SV series PLC	3-2
3.1	.2	Installing a DVP-SV series PLC and a Load Cell Module on a DIN	l
		rail	3-2
3.2	Сог	mmunication	3-3
3.3	Ext	ernal Wiring	3-4
3.4	Sel	ecting a Load Cell Sensor	3-6

3.1 Installation

3.1.1 Connecting a Load Cell Module to a DVP-SV series PLC

- Pull the I/O module clips on a DVP-SV series PLC. Insert the points in the corner of a load cell module into the four holes in the DVP-SV series PLC. Please see step ① in the figure below.
- Press the I/O module clips on the DVP-SV series PLC, and make sure that the load cell module is tightly connected to the DVP-SV series PLC. Please see step 2 in the figure below.

3.1.2 Installing a DVP-SV series PLC and a Load Cell Module on a DIN rail

- Please use a 35 mm DIN rail.
- Pull the DIN rail clips on a DVP-SV series PLC and a load cell module. Install the DVP-SV series PLC and the load cell module on the DIN rail.
- Press the DIN rail clips on the DVP-SV series PLC. Please see the figure below.

3.2 Communication

• Please wire a load cell module according to the definitions of the pins in a communication connector.

PC COM Port 9 PIN D-SUB female	\longleftrightarrow	DVP211LC COM Port 8 PIN MINI DIN
Rx 2 Tx 3 GND 5 - 7 - 8 - 1 - 4 - 6		5 Tx 2 1 4 Rx 5 3 8 GND 8 7 1,2 5V 7

- 3
- There are 2 communication interfaces in a load cell module which can communicate with a PC or other devices. COM1 is an RS-232 port, and COM2 is an RS-485 port. Both ports meet the standard MODBUS protocol. A PC can directly communicate with a load cell module through COM1.
- Delta power supply modules are highly recommended.

3.3 External Wiring

• Multiple load cells connected in parallel are connected to a single load cell module.

Note 1: Please connect on a power supply module and on the load cell module to a system ground, and then ground the system ground or connect the system ground to a distribution box.
 Note 2: If multiple load cells are connected in parallel, the total impedance should be greater than 40 Ω.

3.4 Selecting a Load Cell Sensor

1. Exciting voltage:

An excitation voltage is external power provided for a load cell sensor. The maximum voltage that a sensor can accept is specified in the specifications for the sensor. The exciting voltage that a load cell module provides is +5 V, and therefore a sensor which can accept a voltage greater than 5 V can be used.

2. Eigenvalue

A load cell sensor uses a bridge circuit. If a load cell is under pressure, SIG+ and SIG- will output voltages which are in proportion to force. An eigenvalue determines the characteristics of the output of a load cell sensor. The unit used is mV/V. If a load cell receives external force, it will output low voltage. Output a sensor: (Force/Maximum rated load)×(Exciting voltage×Eigenvalue)

Example: The eigenvalue of a sensor is 2 mV/V, and the maximum rated load of the sensor is 10 kg. The voltage provided by a module is 5 V. The voltage to which the maximum rated load corresponds is 10 mV. If the load of the sensor is 1 kg, the voltage that the sensor outputs will be 1 mV. The eigenvalue that the module can support is 80 mV/V. The sensors whose eigenvalues are less than 80 mV/V can be used.

3. Maximum rated load

When users select a load cell module, they have to consider factors such as loads, tares, vibrations, and shocks. The closer the load on a load cell sensor is to the maximum rated load specified in the specifications for the load cell sensor, the more accurately the load is measured.

4. Four-wire configuration/Six-wire configuration

There are two ways to wire a load cell sensor. They are a four-wire configuration and a six-wire configuration. A load cell module provides power for a load cell sensor by means of EXC+/EXC-. However, there is impedance between the load cell module and the sensor. The voltage that the sensor actually receives is less than the voltage provided by the module. The output terminals SIG+ and SIG- on a sensor have relations with the voltages received. If the distance between a module and a sensor is short, the impedance between the module and the sensor will be small, and a four-wire configuration can be adopted. If the distance between a module and a sensor is long, a six-wire configuration can be used to reduce the error resulting from the impedance between the module and the sensor.

5. Estimating precision

The precision of a load cell module is 0.04%. The maximum rated load of a load cell sensor multiplied by 0.04% is the maximum precision that a load cell module can resolve. (The measurement time set by default is 50 milliseconds.) If the measurement time set is longer, the precision presented will increase. When users select a load cell sensor, they have to check whether the conversion time of the load cell sensor and the precision of the load cell sensor meet their requirements.

Chapter 4 Control Registers

Table of Contents

4.1 -	Table of Control Registers	
4.2 I	Descriptions of the Control Registers	
4.3 I	Descriptions of Functions	
4.3.1	Measuring a Net Weight	
4.3.2	2 Stability Check	
4.3.3	B Determining Zero	
4.3.4	Filtering out Weights	
4.3.5	6 Correspondence between Current Outputs and Weights	

4.1 Table of Control Registers

CR#	Address	Att	tribute	Register name	Register name Explanation						
					The model code of a load	cell module is defined by					
					the module's system.						
#0	H1000 C	0	R	Model name	DVP201LC-SL's model co	ode=H'5106					
					DVP202LC-SL's model co	ode=H'5206					
					DVP211LC-SL's model co	ode=H'5906					
					Hexadecimal value						
#1	H1001	0	R	Firmware version	The current firmware vers	ion of a load cell module					
					is displayed.						
					CH1: Bit 0~bit 7; CH2: Bit	8~bit 15					
					Mode 0: 1 mV/V; Mode 4: 20 mV/V						
#2	H1002	0	R/W	Characteristic value	Mode 1: 2 mV/V; Mode 5: 40 mV/V						
					Mode 2: 4 mV/V; Mode 6: 80 mV/V						
					Mode 3: 6 mV/V	1.1.4 -					
					CH1: bit0~bit7; CH2: bit8-	~Dit15					
				Depation time for	Mode U: 2.5ms; Mode 5: 6	oums					
#3	H1003	0	R/W	Reaction time for	Mode 1: 10ms; Mode 6: 1	00ms					
				measurement	Mode 3: 20ms; Mode 8: 4	00ms					
					Mode 4: 50ms (factory se	ttina)					
					K1: Subtracting the tare	K4: Subtracting the tare					
					measured by CH1	measured by CH2					
					K2: Not subtracting the	K5: Not subtracting the					
#6	H1006	x	R/W R	R/W Returning to	tare measured by CH1	tare measured by CH2					
				zero/Subtracting a tare	K3: Restoring the weight	K6: Restoring the weight					
					measured by CH1 to	measured by CH2 to					
					zero	zero					
					Displaying a gross	CH1: Bit 0~bit 7; CH2: Bit	8~bit 15				
#7	H1007	0	R/W	weight/net weight	K0: Displaying a gross we	eight					
					K1: Displaying a net weig	ht					
#8	H1008	0	R/W	Tare measured by CH1							
		_		(Low word)	-						
#9	H1009	0	R/W	Tare measured by CH1							
				(High word)	Displaying a tare						
#10	H100A	0	R/W	Tare measured by CH2							
						(Low word)	_				
#11	H100B	0	R/W	High word							
		<u> </u>		Weight measured by CH1							
#12	H100C	X	R	(Low word)							
				Weight measured by CH1	-						
#13	H100D	X	R	(High word)							
									Weight measured by C2	Displaying a weight	
#14	H100E	X	R	(Low word)							
				Weight measured by C2	+						
#15	H100F	X	R	(High word)							
				Number of weights							
#16	H1010	0	R/W	measured by CH1 in a	Setting range: K1~K500 (Factory setting: K5)					
				stability range							
				Number of weights							
#17	H1011	0	R/W	measured by CH2 in a	Setting range: K1~K500 (Factory setting: K5)					
						stability range					
#18	H1012	0	R/W	Stability range for CH1	Setting range: K1~K1000	0 (Factory setting: K10)					
#19	H1013	0	R/W	Stability range for CH2	Setting range: K1~K1000	0 (Factory setting: K10)					

CR#	Address	s Attribute		Register name	Explanation
#25	H1019	0	R/W	Total number of points which need to be adjusted	Setting range: K2~K20 (Factory setting: K2)
#26	H101A	x	R/W	Adjustment command	CH1: K1~K20 CH2: K21~K40
#27	H101B	0	R/W	Selecting a point which needs to be adjusted for CH1	K1~K19
#28	H101C	0	R/W	Selecting a point which needs to be adjusted for CH2	K1~K19
#29	H101D	0	R/W	Digital value given to a point which needs to be adjusted for CH1 (Low word)	Digital value given to a point which needs to be
#30	H101E	0	R/W	Digital value given to a point which needs to be adjusted for CH1 (High word)	adjusted
#31	H101F	0	R/W	Digital value given to a point which needs to be adjusted for CH2 (Low word)	Digital value corresponding to a weight needs to be
#32	H1020	0	R/W	Digital value given to a point which needs to be adjusted for CH2 (High word)	adjusted
#33	H1021	0	R/W	Weight of a point which needs to be adjusted for CH1 (Low word)	
#34	H1022	0	R/W	Weight of a point which needs to be adjusted for CH1 (High word)	Moight of a weight
#35	H1023	0	R/W	Weight of a point which needs to be adjusted for CH2 (Low word)	
#36	H1024	0	R/W	Weight of a point which needs to be adjusted for CH2 (High word)	
#37	H1025	0	R/W	Maximum which can be measured by CH1 (Low word)	
#38	H1026	0	R/W	Maximum which can be measured by CH1 (High word)	Users can specify the maximum weight which can be measured by CH1/CH2. If a weight measured
#39	H1027	0	R/W	Maximum which can be measured by CH2 (Low word)	exceeds the maximum weight, an error code will be stored.
#40	H1028	0	R/W	Maximum which can be measured by CH2 (High word)	
#41	H1029	x	R/W	Storing all setting values (H'5678)	Storing all setting values, and writing them to the flash memory in the load cell module used H0: No action (factory setting) H'FFFF: All setting values are stored successfully. H'5678: Writing all setting values to the flash memory in the load cell module used

CR#	Address	Att	tribute	Register name	Explanation	
CR#41	: If the valu	ie ir	ר CR#4	1 is H'5678, all setting values	will be stored in the flash memory. After the setting	
values	are stored	, the	e value	in CR#41 will become H'FFF	F. If the value written to CR#41 is not H'5678, it will	
automa	automatically become H'0. For example, if H1 is written to CR#41, it will become H1. (After the adjustment of					
points i	s complete	e, pl	ease u	se CR#41 to make adjustmer	nt parameters retentive.)	
#12	H102A	x	R/M	Restoring all settings to	Restoring all settings to factory settings ($H'55\Delta\Delta$)	
#42	THUZA	^	1\/ VV	factory settings		
				Way in which weights		
#43	H102B	X	R/W	measured by CH1 are	K0: Not filtering weights (factory setting)	
				filtered out	K1: Filtering out the maximum weight measured	
				Way in which weights	K2: Averaging weights	
#44	H102C	X	R/W	measured by CH2 are		
				filtered out		
#45	H102D	X	R/W	Filter parameter for CH1	Filtering out the maximum weight measured: K0~K8	
					Averaging weights: The number of weights which	
#46	H102E	X	R/W	Filter parameter for CH1	need to be averaged should be in the range of K1 to	
					K100.	
				Range for determining		
				whether the digital value		
#48	H1030	0	R/W	corresponding to a weight	If the digital value corresponding to a weight	
				measured by CH1 is 0	measured by CH1/CH2 is in the range specified, bit	
				grams	5/bit 10 in CR#51 will be set (the weight measured	
				Range for determining	is will be counted as 0 grams).	
				whether the digital value	Default value: K10	
#49	H1031	0	R/W	corresponding to a weight	Setting range: K0~K32767	
				measured by CH2 is 0		
				grams		
					The status of the load cell module used is stored in	
#51	H1033	X	R/W	Status code	this register. Please refer to the status table below	
					Fostery setting: H'0000	
#52	H1034	0	R/\//	RS-232 station address	The default value in CR#52/CR#54 is K1. The	
#02	111004		10/00	RS-232 communication	setting values in CR#52 and CR#54 should be in	
#53	H1035	0	R/W	format	the range of K1 to K255. The default value in	
#54	H1036	0	R/\//	RS-485 station address	CR#53/CR#55 is H'0000 (ASCII, 9600 bps, 7 data	
#34	111030		1.7, 4.4		bits, even parity bit, one stop bit). Please refer to the	
#55	H1037	0	R/W	RS-485 communication	communication format table below for more	
		ľ		format	information.	
#100	H1064	X	R/W	Current output	Setting range: K0~K4000	
#101	H1065	X	R	Digital input terminal	Bit 0: X0; Bit 1: X1	
#102	H1066	X	R/W	Digital output terminal	Bit 0: Y0; Bit 1: Y1; Bit 2: Y2; Bit 3: Y3	
					K0: Digital value corresponding to a current output	
					in the range of 0 mA to 20 mA (factory setting)	
					K1: Digital value corresponding to a current output	
	114007		D 444		in the range of 4 mA to 20mA	
#103	H1067	11067 O R/V	R/W Way of outputting a current	K2: Weight corresponding to a current output in the		
					range of 0 mA to 20mA	
					K3: Weight corresponding to a current output in the	
					range of 4 mA to 20mA	

CR#	Address	Att	ribute	Register name	Explanation			
#104	H1068	ο	R/W	Way in which a digital input terminal operates	X0: Bit 0~bit 7 H0: General of H1: If a digita restored to ze H2: If a digita measured. H3: If a digita subtracted. H4: If a digital be measured gross weight H6: If a digital adjusted. H7: If a digital be adjusted. X0 and X1 ca	7; X1: Bit 8~bi digital input ter l input termina ero, l input termina l input termina l input termina l input termina l input termina l input termina	t 15 rminal (factor al is ON, a tar al is ON, a tar al is OFF, a ne but terminal is red. al is ON, zero I is ON, the f o H4 simultar	ry setting) eight will be re will be re will be et weight will s ON, a o will be irst point will neously.
					Bit 15~bit 12	Bit 11~bit 8	Bit 7~bit 4	Bit 3~bit 0
#105	H1069	0	R/W	Way in which a digital output terminal operates	Y3 H0: General of H1: If no weig terminal will b H2: If no weig terminal will b H3: If a weigh maximum we will be ON. H4: If a weigh maximum we will be OFF. H5: If an excir output termina H6: If an excir output termina H7: If a weigh specified, a d H8: If a weigh	Y2 digital output to the oN. of the measure of OFF. of measured is ight specified, at measured is ight specified, tation voltage al will be ON. tation voltage al will be OFF. of measured is igital output te of measured is igital output te	Y1 erminal (facto ed, a digital o ed, a digital o greater than a digital out greater than a digital out is abnormal, is abnormal, is abnormal, is in the stabili erminal will be	Y0 pry setting) utput utput a the put terminal a digital a digital ity range e ON. ity range e OFF.
Symbol O: Rete	Symbols:							
X: Unre	X: Unretentive register							
R: User	R: Users can read data.							

W: Users can write data.

4.2 Descriptions of the Control Registers

CR#0: Model name

[Description] DVP201LC-SL's model code=H'5106 DVP202LC-SL's model code=H'5206 DVP211LC-SL's model code=H'5906

CR#1: Firmware version

[Description]

High byte: Number at the left side of the decimal point in a version number Low byte: Number at the right side of the decimal point in a version number Example: $V1.01 \rightarrow CR\#=H'0101$

CR#2: Eigenvalue

[Description]

The specifications for load cells vary from brand to brand. Users need to set an eigenvalue according to the specification for the load cell used.

Eigenvalue				
Specifications for the eigenvalue in a load cell	Selection of an eigenvalue	Setting value in CR#2		
0mV/V < Eigenvalue≦1 mV/V	1m V/V	H'0000		
1mV/V < Eigenvalue≦2 mV/V	2m V/V	H'0001 (Default setting)		
2mV/V < Eigenvalue≦4 mV/V	4m V/V	H'0002		
4mV/V < Eigenvalue≦6 mV/V	6m V/V	H'0003		
6mV/V < Eigenvalue≦20 mV/V	20m V/V	H'0004		
20mV/V < Eigenvalue≦40 mV/V	40m V/V	H'0005		
40mV/V < Eigenvalue≦80 mV/V	80m V/V	H'0006		
Eigenvalue > 80 mV/V	Not supp	orted		

CR#3: Reaction time for measurement

[Description]

Users can set the time which needs to elapse before a weight is sampled. The shorter the time set is, the shorter the time it takes to filter weights. The weights measured are not in a stability range. If the time set is the maximum time which can be set, the weights measure will be in a stability range.

Reaction time for measurement			
Input value	Description		
Mode 0: H'0000	2.5 ms		
Mode 1: H'0001	10 ms		
Mode 2: H'0002	16 ms		
Mode 3: H'0003	20 ms		
Mode 4: H'0004	50ms (Default setting)		
Mode 5: H'0005	60 ms		
Mode 6: H'0006	100 ms		
Mode 7: H'0007	200 ms		
Mode 8: H'0008	400 ms		

CR#6: Returning to zero/Subtracting a tare

[Description]

Users can use CR#6 to restore the weight measured to zero.

Input value	Description
K1	Subtracting the tare measured by CH1
K2	Not subtracting the tare measured by CH1
K3	Restoring the weight measured by CH1 to zero
K4	Subtracting the tare measured by CH2
K5	Not subtracting the tare measured by CH2
K6	Restoring the weight measured by CH2 to zero

CR#7: Displaying a gross weight/net weight

[Description]

Users can choose to display a gross weight or a net weight. The channel which is not used can be disabled.

Bit 15~bit 8	Bit 7~bit 0	
CH2	CH1	
K0: Displaying a gross weight		
	,	

CR#8~11: Tare measured by CH1/CH2

[Description]

Tares are displayed in CR#8~CR#11. Users can write tares to CR#8~CR#11, or use CR#8~CR#11 to read tares.

CR#12~15: Weight measured by CH1/CH2

[Description]

Weights are displayed in CR#12~CR#15.

CR#16~17: Number of weights measured by CH1 in a stability range

[Description] Factory setting: K5 Setting range: K1~K500 Please refer to section 4.3.2 for more information.

CR#18~19: Stability range for CH1/CH2

[Description] Factory setting: K10 Setting range: K1~K10,000 Please refer to section 4.3.2 for more information.

CR#25: Total number of points which need to be adjusted

[Description] Factory setting: K2 Setting range: K2~K20 Users generally adjust two points, but they can adjust several points. The maximum number of points which can be adjusted is 20.

CR#26: Adjustment command			
Description]			
An adjustment command is stored in CR#26.			
Command value	Description of CR#26		
	K1: The command value is used when no		
	weight is measured by CH1.		
K1~K20	K2~K20: The command values are used when		
	point 1~point 19 which are measured		
	by CH1 need to be adjusted.		
	K21: The command value is used when no		
	weight is measured by CH2.		
K21~40	K22~K40: The command values are used when		
	point 1~point 19 which are measured		
	by CH2 need to be adjusted.		

CR#27~28: Selecting a point which needs to be adjusted for CH1/CH2

[Description]

Description
Selecting point 1~point 19 for CH1
Selecting point 1~point 19 for CH2

CR#29~32: Digital value given to a point which needs to be adjusted for CH1/CH2

[Description]

The digital values given to points which need to be adjusted are displayed in CR#29~CR#32.

CR#33~36: Weight of a point which needs to be adjusted for CH1/CH2

[Description]

The weights of points which need to be adjusted are written to CR#33~CR#36.

CR#37~40: Maximum weight which can be measured by CH1/CH2

[Description]

Users can specify the maximum weight which can be measured by CH1/CH2. If the weight measured by CH1/CH2 exceeds the maximum weight specified, bit 4/bit 9 in CR#51 will be set to 1.

CR#41: Storing all setting values

[Description]

CR#41 is used to store all setting values, and write them to the flash memory in the load cell module used. Factory setting: 0

If the value in CR#41 is H'5678, all setting values will be stored in the flash memory in the load cell module used. After the setting values are stored, the value in CR#41 will become H'FFFF. If the value written to CR#41 is not H'5678, it will automatically become H'0. For example, if H'1 is written to CR#41, it will become H'0.

Description	H'0	H'FFFF	H'5678
Setting	No action	All setting values are stored successfully.	Writing all setting values to the flash memory in the load cell module used

CR#43~44: Way in which weights measured by CH1/CH2 are filtered out

[Description]

Users can set a way in which weights measured by CH1/CH2 are filtered out according to their requirements.

K0: Not filtering weights (factory setting)

K1: Filtering out the maximum weight measured

K2: Averaging weights

CR#45~46: Filter parameter for CH1/CH2

[Description]

Filtering out the maximum weight measured: K0~K8

Averaging weights: The number of weights which need to be averaged should be in the range of K1 to K100.

CR#48~49: Range for determining whether the digital value corresponding to a weight measured by CH1/CH2 is 0 grams

[Description]

If the digital value corresponding to a weight measured by CH1/CH2 is in the range specified, bit 5/bit 10 in CR#51 will be set to 1.

CR#51: Status code				
[Description]	Description]			
Bit number	Value	Description		
Bit 0	H'0001	Abnormal power		
Bit 1	H'0002	Hardware failure		
Bit 2	H'0004	The weight measured by CH1 exceeds the maximum weight which can be measured, or the voltage of SEN is incorrect.		
Bit 3	H'0008	CH1 is adjusted incorrectly.		
Bit 4	H'0010	The weight measured by CH1 exceeds the maximum weight which can be measured.		
Bit 5	H'0020	No weight is measured by CH1.		
Bit 6	H'0040	A weight measured by CH1 is in the stability range specified.		
Bit 7	H'0080	The conversion of a weight measured by CH2 into a digital value is incorrect, or the voltage of SEN is incorrect.		
Bit 8	H'0100	CH2 is adjusted incorrectly.		
Bit 9	H'0200	The weight measured by CH2 exceeds the maximum weight which can be measured.		
Bit 10	H'0400	No weight is measured by CH2.		
Bit 11	H'0800	A weight measured by CH2 is in the stability range specified.		
Bit 12~bit 15		Reserved		

CR#52~55: Setting RS-232/RS-485 communication

[Description]											
Bit 15	Bit 14~Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	E	3it 2	2	Bit 1	Bit 0
ACSII/RTU	Reserved	Seria	Serial transmission speed Data length St			St	top bit		Pari	ty bit	
	Description										
Bit 15	ACSII/RTU			0	ACSII			1	RT	U	
	Serial transmission speed		0	9,600	0 bps		1	19,200 bps			
Bit 7~bit 4			2	38,400 bps			3	57,600 bps			
				4	115,20	0 bps		5	Re	served	
Bit 3 Data length (RTU=8 bits)		0	7			1	8				
Bit 2	Bit 2 Stop bit		0	1 bit			1	2 b	its		
	Dority bit			0	Even			1	Od	d	
	Parity bit		2	Reserv	/ed	3 Reserved					

Example: If RS-232 communication format is "115200, 7, E, 1, ASCII", the value in CR#53 will be H'0400.

4.3 Descriptions of Functions

4.3.1 Measuring a Net Weight

Users can choose to measure the net weight or the gross weight of an object. A net weight is the weight of a product, that is, the actual weight of a product without its package. The weight of a package is a tare. A gross weight is a total weight, namely a net weight plus a tare.

- Tare: A tare is the weight of a package
- Net weight: A net weight is the weight of a product, that is, the actual weight of a product without its package.
- Gross weight: A gross weight is a total weight, namely the weight of a product itself (a net weight) plus the weight of a package (a tare).

Gross weight=Net weight+Tare
 Example: A product weighs 10 kilograms, and the carton in which the product is packed weighs 0.2 kilograms. The total weight gotten is 10 kilograms.
 Net weight=10 kg
 Tare=0.2 kg

Gross weight=10.2 kg

- Relevant control registers
 - CR#6: Returning to zero/Subtracting a tare
 - CR#7: Displaying a gross weight/net weight
 - CR#8~11: Tare measured by CH1/CH2

4.3.2 Stability Check

When an object is put on a load cell, users can check whether the present weight of the object is in a stability range specified.

- If a weight measured is in a stability range specified by users (CR#18/CR#19), bit 6/bit 11 in CR#51 will be set to 1.
- If a weight measured exceeds a range specified by users (CR#18/CR#19), bit 6/bit 11 in CR#51 will be set to 0. Bit 6/Bit 11 in CR#51 will not be set to 1 until the number of weights measured in a stability range reaches the value in CR#16/CR17.

Example: The measurement time set is 10 milliseconds, the number of weights measured in a stability range is 10, and the stability range set is 1000 grams. If a variation exceeds 1000 grams, bit 6/bit 11 in CR#51 will be set to 0. If the variations in 100 milliseconds (10×10 ms) are within 1000 grams, bit 6/bit 11 in CR#51 will be set to 1. (Users should judge whether the present weight measured is in the stability range set before they perform control.)

• Relevant control registers

- CR#16/CR#17: Number of weights measured by CH1/CH2 in a stability range
- CR#18/CR#19: Stability range for CH1/CH2

4.3.3 Determining Zero

If an object is removed from the load cell used, bit 6/bit 11 in CR#51 will be set to 1, bit 5/bit 10 in CR#51 will be set to 1, and users can perform the next control. (If a weight measured is in the zero range specified, bit 5/bit 10 in CR#51 will be set to 1.)

- Relevant control registers
 - CR#48/CR#49: Range for determining whether a weight measured by CH1/CH2 is 0 grams

4.3.4 Filtering out Weights

There are two ways to filter out weights.

- Filtering out the maximum/minimum weight measured: If there is a maximum weight or a minimum weight, CR#45/CR#46 can be used to filter out the maximum weight or the minimum weight. If the value in CR#45/CR#46 is bigger, more weights will be filtered out. Setting range: K0~K8
- Averaging weights: The values read are averaged so that a steady value is obtained. There may be peak values due to unavoidable external factors, and the average value obtained changes accordingly. The maximum number of values which can be averaged are 100.

4.3.5 Correspondence between Current Outputs and Weights

Currents outputs directly correspond to weights. Currents vary with weights. Users can set a current output mode by means of CR#103.

A load cell module is directly connected to the left side of a DVP series PLC. The instruction TO is used to set parameters.

CR#103 is set to K2, and CR#37/CR#38 is set to K10000. Please see the WPLSoft program shown below.

┢	—					то	K100	K103	K2	K1
		I	DTO	K100	K37		K10000		K1	

Chapter 5 Making Adjustment

Table of Contents

5.1	Steps in Adjusting Points	5-3
5.2	Example 1	5-4
5.3	Example 2	5-5

The purpose of making adjustment is to make the weight measured by a cell correspond to the digital value displayed in a load cell module. Generally, two points are adjusted. After a system is set up, users can put no load on the scale. The weight measured is 0 grams when no load is put on the scale. The users can put a given weight on the scale, and set a digital value corresponding to the weight. The two points are adjusted. For example, if a load cell sensor which can measure a maximum weight of 10 kg is used, and 1 kg correspond to K1000, the curve presented will be like the one shown below.

Adjusting two points

In addition to the adjustment of two points, a load cell supports the adjustment of multiple points (20 points at most). A characteristic curve is shown below.

Adjusting multiple points

5.1 Steps in Adjusting Points

5

5.2 Example 1

Example: One point is adjusted. (A weight which weighs 1 kg corresponds to 1000 lsb.)

A load cell module is directly connected to the left side of a DVP series PLC. The instruction TO is used to make adjustment. The steps in making adjustment are as follows.

Step 1: Write K2 to CR#25. Please see the WPLSoft program shown below.

Step 2: Connect a load cell to a module, and put no load on the load cell.

Step 3: Write H'0001 to CR#26. Please see the WPLSoft program shown below.

Step 4: Select point 1 (default setting), and write H1 to CR#27. Please see the WPLSoft program shown below.

Step 5: Put a standard weight which weighs 1000 g on the load cell.

Step 6: Write K1000 (1000 g) to CR#33.

5-4

Step 7: Write H2 to CR#26.

Step 8: Make sure that the value displayed is correct, and make the adjustment retentive. Write H'5678 to CR#41. Please see the WPLSoft program shown below.

5.3 Example 2

Example: Three points are adjusted.

A load cell module is used independently. The steps in making adjustment are as follows.

Step 1: Select **3** in the **The Num. of Adjustment** box. The weight of the first weight is 500 g. It corresponds to 500 lsb. The weight of the second weight is 1000 g. It corresponds to 1000 lsb. The weight of the third weight is 1500 g. It corresponds to 1500 lsb. Please see the figure below.

🛎 Untitled0 - LCSoft		
🙀 🚔 📰 🐺 🗊 CH1:	6 g Firmware Version: 1.02	
Eile Communication Option	n <u>H</u> elp	
System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 A djustment Load Cell with out any load on it.	
	Channel 1	
	ت 0 LSB	
	Online [RS232: COM1] DVP211LC-SL]

Step 2: Put no load on the load cell used. Please see the figures below.

Step 3: Put a standard weight which weighs 500 g on the load cell used, and click **Next**. Please see the figure below.

🛎 Untitled0 - LCSoft		
🙀 🚅 📰 🐺 🗊 Сні: 5	510 g Firmware Version: 1.02	
<u>F</u> ile <u>C</u> ommunication <u>O</u> ption	n <u>H</u> elp	
System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 Adjustment Add standard weights on load cell.	
	Channel 1	
	σι 0 LSB	
	Online [RS232: COM1] DVP211LC-SL	

Step 4: Type "500" in the **Wight value of weights** box, type "500" in the **Digital value of weights** box, and click **Next**. Please see the figures below.

🛎 Untitled0 - LCSoft				
🔣 🚔 📰 🛐 🗊 🛙 CH1: 1)7 g Firmware Ve	ersion: 1.02		
<u>File</u> <u>C</u> ommunication <u>Option</u>	<u>H</u> elp			
System Settings Adjusted Settings Monitor	Channel 1 Adjustment Fill in the weight value of corresponding digital valu Weight value of weight Digital value of weights	weights and the se. s 500 g \$ 500 g \$ 500	Cancel < Back Ne	xt >
	-	Channel 1		
	σ 0	 0 LSB		
	🗧 Online	[RS232: COM1]	DVP211LC-SL	

Step 5: Put a standard weight which weighs 1000 g on the load cell used. Type "1000" in the **Wight value of** weights box, type "1000" in the **Digital value of weights** box, and click **Next**. Please see the figures below.

🛎 Untitled0 - LCSoft		
🔣 🚅 📰 🐺 🗊 Сні: :	500 g Firmware Version: 1.02	
Eile Communication Option	1 Help	
System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 Adjustment Adjustment Setting Weight value of weights 1000 g Digital value of weights 1000 < Back Next>	
	Channel 1 500	
	500 400	
	300 200 100 0	
	0 50 100 150 200 250 300 350 400 450 500 LSB	
	Online [RS232: COM1] DVP211LC-SL	

Step 6: Put a standard weight which weighs 1500 g on the load cell used. Type "1500" in the **Wight value of** weights box, type "1500" in the **Digital value of weights** box, and click **Next**. Please see the figures below.

🛎 Untitled0 - LCSoft		
🔣 💕 📰 🛐 🛐 CH1: 9	921 g Firmware Version: 1.02	
<u>File</u> <u>Communication</u> <u>Option</u>	I Help	
System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 Adjustment Adjustment Setting Weight value of weights 1500 g Digital value of weights 1500 < Back Next >	
	Channel 1 1.00	
	1,000 800 600 400	
	200 0 200 0 100 200 300 400 500 600 700 800 900 1,00 LSB	
	Online [RS232: COM1] DVP211LC-SL	

Step 7: The adjustment made is complete, and a curve is displayed. Please see the figures below.

Image:	🛎 Untitled0 - LCSoft				
Elle Communication Option Help System Settings Adjusted Settings Adjustment The Num. of Adjustment 3 The adjusted value settings Item Standard Digital Value 1 500 500	🔣 💕 📰 🛐 🗊 CH1:	1499 g	Firmware Version: 1.02		
System Settings Channel 1 Parameter Settings Adjusted Settings Adjusted Settings Adjustment The Num. of Adjustment 3 Item Standard Digital Value 1 500	Eile <u>Communication</u>	n <u>H</u> elp			
2 1000 1000 3 1500 1500 Next>	System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 Adjustment The Num. of Ad Item Stands 1 500 2 1000 3 1500	Sijustment 3 ard Digital Value 500 1000 1500	The adjusted value sett	ings
Channel 1 1,500 1,000 500 500 500 0 200 400 600 800 1,000 1,000 1,200 1,400 LSB		1,500 1,000 500 0	Cha 500 200 400 600	nnel 1 1,000 800 1,000 1,200 LSB	1,50 X 1,400

MEMO

