Industrial Automation Headquarters
Delta Electronics, Inc.
18 Xinglong Road Tay Center
18 Xinglong Road, Taoyuan Distric
Taoyuan City 33068 Taiwan
Taoyuan City 33068, Taiwan
TEL: $886-3-362-6301$ / FAX: $886-3-371-6301$

Asia

Delta Electronics (Shanghai) Co., Ltd
No. 182 Minyu Road, Pudong Shanghai,
People's Republic of China
Post code : 201209
Post code: : 201209 / / FAX: 86--21-6872-3996
TEL: 86 -68723988 / FA:
Customer Service: 400-820-9595
Delta Electronics (Japan), Inc.
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012
TEL: 81-3-5733-1111/ F
Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong Geumcheon-gu, Seoul, Korea, 153-704
TEL: $82-2-515-5303 /$ FAX: $82-2-515-5302$
Delta Electronics Int ' (\mathbf{S}) Pte Ltd. 4 Kaki Bukit Ave 1, \#05-04, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228
Delta Electronics (India) Pvt. Ltd. Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India
TEL: 91-124-4874900 / FAX: 91-124-4874945
Delta Electronics (Thailand) Public Company Limited
909 Soi 9 , Moo 4,Bangpoo Industrial
Estate(Epz) Pattana 1rd., Tambol Phraksa
Amphur Muang, Samutprakarn 10280 Thailan
TEL: 66(0)2-709-280
Delta Energy Systems Australia Pty Ltd. Unit 20-21, 45 Normanby rd, Notting Hill Vic 3168, Australia

Americas
Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173, 5101 Davis Drive,
Research Triangle Park, NC 27709, U.S.A.
Delta Greentech (Brasil) S.A.
Sao Paulo Office
Rua ltapeva, $26-3^{\circ}$ andar Edificio Itapeva One-Bela Vista
TEL: 55-11-3530-8642 F FAX: 55
Delta Electronics Int. Mexico
Mexico Office
Via Dr. Gustavo Baz 2160, La Loma
C.P. 54060
C.P. 54060, Estado de Méxia
*We reserve the right to change the information in this user manual without prior notice.

EMEA

Delta Electronics (Netherlands) B. .
Eindhoven Office
De Witbogt 20,5652 AG Eindhoven, The Netherlands
TEL: 31 (0) $40-8003800$ / FAX: 31 (0) $40-8003898$
MAIL: Sales.IA.EMEA@deltaww.com
MAIL: Sales.IA.Benelux@deltaww.con
MAIL: Sales.IA.Benelux@deltaww.com
Delta Energy Systems (France) S.A
ZI du bois Chaland 215 rue des Pyrénée
Zl du bois Chaland 215 rue des Pyrénées,
isses 91056 Evry Cedex
Lisses 91056 Evry Cedex
AIL: Sales.IA.France@deltaww.com
Delta Energy Systems (Spain) S.L.
Ctra. De Villaverde a Vallecas, 2651° Dcha Ed
Hormigueras - PI. de Vallecas 28031 Madrid
Hormigueras - P.I. de Vallecas 28031 Madrid
C/LIul, 321 -329 (Edif. CINC) | $22 @$ Barcrelona 08019 Barcelona
MAlL: Sales.IA.Iberia@deltaww.com
Delta Energy Systems Srl (Italy)
Via Senigallia 18/2-20161 Milano (MI)
Piazza Grazioli $18-00186$ ROMA
MAIL: Sales. IA. Italy@deltaww.com
Delta Energy Systems (Germany) GmbH
Coesterweg 45, D-59494 Soest
MAll: Sales.IA. DACH@deltaww
Delta Energy Systems LLC (CIS)
ereyskaya Plaza II, office 112 Vereyskaya str.
121357 Moscow

Delta Greentech Ltd. (Turkiye)

Serifali Mevkii Barbaros Bulvari Söylesi Sokak
No:19 K:1 Yukari Dudullu 34775 Ümraniy
stanbul Sarigazi V.D 2740624765
MALL: Sales.IA.Turkey@delta-emea.com
Delta Energy Systems (AG Dubai BR) P.O. Box 185668, Gate 7, 3rd Floor, Hamarain Centre Dubai, United Arab Emirates MAIL: Sales.IA.MEA@deltaww.con

Delta Elevator Drive VFD-ED Series User Manual

Thank you for choosing DELTA's high-performance VFD-ED Series. The VFD-ED Series is manufactured with high-quality components and materials and incorporates the latest microprocessor technology available.

This manual is to be used for the installation, parameter setting, troubleshooting, and daily maintenance of the AC motor drive. To guarantee safe operation of the equipment, read the following safety guidelines before connecting power to the AC motor drive. Keep this operating manual at hand and distribute to all users for reference.

To ensure the safety of operators and equipment, only qualified personnel familiar with AC motor drive are to do installation, start-up and maintenance. Always read this manual thoroughly before using VFD-ED series AC Motor Drive, especially the WARNING, DANGER and CAUTION notes. Failure to comply may result in personal injury and equipment damage. If you have any question, please contact your dealer.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

AC input power must be disconnected before any wiring to the AC motor drive is made.
2. A charge may still remain in the DC-link capacitors with hazardous voltages, even if the power has been turned off. To prevent personal injury, please ensure that power has turned off before opening the AC motor drive and wait ten minutes for the capacitors to discharge to safe voltage levels.
3. Never reassemble internal components or wiring.
4. The AC motor drive may be destroyed beyond repair if incorrect cables are connected to the input/output terminals. Never connect the AC motor drive output terminals U/T1, V/T2, and W/T3 directly to the AC mains circuit power supply.
5. Ground the VFD-ED using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed. Refer to the Basic Wiring Diagram.
6. VFD-ED series is used only to control variable speed of 3-phase induction motors, NOT for 1-phase motors or other purpose.
7. VFD-ED series shall NOT be used for life support equipment or any life safety situation.

OM

1. DO NOT use Hi-pot test for internal components. The semi-conductor used in AC motor drive easily damage by high-voltage.
2. There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. To prevent damage to these components, do not touch these components or the circuit boards with metal objects or your bare hands.
3. Only qualified persons are allowed to install, wire and maintain AC motor drives.
4. Some parameters settings can cause the motor to run immediately after applying power.
5. DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight, high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic particles.
6. Only use AC motor drives within specification. Failure to comply may result in fire, explosion or electric shock.
7. To prevent personal injury, please keep children and unqualified people away from the equipment.
8. When the motor cable between AC motor drive and motor is too long, the layer insulation of the motor may be damaged. Please use a frequency inverter duty motor or add an AC output reactor to prevent damage to the motor. Refer to appendix B Reactor for details.
9. The rated voltage for AC motor drive must be $\leq 240 \mathrm{~V}$ ($\leq 480 \mathrm{~V}$ for 460 V models) and the mains supply current

Firmware version: 1.04

Table of Contents

PUBLICATION HISTORY PubHi-1
CHAPTER 1 INTRODUCTION 1-1
1-1 Receiving and Inspection 1-1
1-2 Nameplate Information 1-1
1-3 Model Name 1-1
1-4 Serial Number 1-1
1-5 Apply for After-sales Service by Mobile Device 1-2
1-6 RFI Switch 1-5
1-7 Dimensions 1-9
CHAPTER 2 INSTALLATION 2-1
2-1About Installation 2-1
2-2 Minimum Mounting Clearance 2-2
CHAPTER 3 WIRING 3-1
3-1 Wiring 3-2
3-2 System Wiring Diagram 3-7
CHAPTER 4 MAIN CIRCUIT TERMINALS 4-1
4-1 Main Circuit Diagram 4-2
4-2 Main Circuit Terminals Specifications 4-4
CHPATER 5 CONTROL TERMINALS 5-1
5-1 Remove the Cover before Wiring 5-1
5-2 Specification of the Control Terminals 5-3
5-3 Control Circuit Terminal Sockets. 5-3
CHAPTER 6 OPTIONAL ACCESSORIES 6-1
6-1 Brake Resistors and Brake Units Used in AC Motor Drives 6-1
6-2 Non-fuse Circuit Breaker. 6-4
6-3 Fuse Specification Chart 6-4
6-4 AC/DC Reactor 6-5
6-5 Zero Phase Reactor 6-7
6-6 EMI Filter 6-9
6-7 Digital Keypad 6-20
6-8 USB/RS-485 Communication Interface IFD6530 6-23
CHAPTER 7 OPTION CARDS 7-1
Remove the top cover 7-1
Screws' Specification for Option Card Terminals 7-2
7-1 EMED-PGABD-1 7-3
7-2 EMED-PGHSD-1 7-7
7-3 EMED-PGHSD-2 7-10
CHAPTER 8 SPECIFICATION 8-1
8-1 230V Series 8-1
8-2 460V Series. 8-1
General Specifications 8-2
CHAPTER 9 DIGITAL KEYPAD 9-1
9-1 Descriptions of Digital Keypad 9-1
9-2 Operating the Built-in Digital Keypad 9-3
9-3 Description of Digital Keypad KPC-CC01 9-4
9-4 Function of Digital Keypad KPC-CC01 9-6
9-5 Digital Keypad KPC-CC01 Fault Code Description 9-18
9-6 TPEditor Installation 9-22
CHAPTER 10 AUTO-TUNING PROCESSS 10-1
CHAPTER 11 SUMMARPY OF PARAMETERS 11-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS 12-1
CHAPTER 13 WARNING CODES 13-1
CHAPTER 14 FAULT CODES 14-1
CHAPTER 15 SUGGESTION \& ERROR CORRECTIONS FOR STANDARD AC MOTOR DRIVES 15-1
CHAPTER 16 FUNCTION OF SAFETY TORQUE OFF 16-1
APPENDIX A. AC MOTOR DRIVES EMC STANDARD INSTALLATION GUIDE. I

Please include the Issue Edition and the Firmware Version, both shown below, when communicating with Technical Support regarding this publication.

Firmware Version: 1.04
Issue date: December 2017

Publication History	
PAGE	UPDATES
1-2 ~ 1-4	Add section 1-5 Apply for After-sales service.
PAGE	MODIFICATIONS
1-6	Isolating main power from ground: The RFI short-circuit cable has to be cut off while conducting high voltage tests.
11-09	Pr03-17 \#10, change ACI to Reserved.
11-10	Pr03-20 \#9, change AVI to AUI1.
11-10	Pr03-20 \#10, change ACl to Reserved.
11-10	Pr03-20 \#11, change AUI to AUI2
11-12	Pr05-13, remove VF and VFPG functions.
11-16	Pr06-45, change the factory setting from 0 to 0002 h .
11-24	Pr11-00, change the factory setting from 0 to 000h.
12-37	Pro5-13, remove VF and VFPG functions.

Firmware Version: 1.04
Issue date: February 2018

PAGE	MODIFICATIONS
$12-15$	Pr02-08:
	Delete these two sentences:
	"When JP1 on the control board...to
	Pr02-08."

01 Introduction

1-1 Receiving and Inspection

After receiving the AC motor drive, please check for the following:

1) Inspect the unit after unpacking to assure it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
2) Make sure that the voltage for the wiring lie within the range as indicated on the nameplate. Install the AC motor drive according to this manual.
3) Before applying the power, make sure that all the devices, including power, motor, control board and digital keypad, are connected correctly.
3) When wiring the AC motor drive, make sure that the wiring of input terminals "R/L1, S/L2, T/L3" and output terminals "U/T1, V/T2, W/T3" are correct to prevent drive damage.
5) When power is applied, select the language and set parameter groups via the digital keypad (KPED-LE01). When executing a trial run, begin with a low speed and then gradually increase the speed until the desired speed is reached.

1-2 Nameplate Information

Using 15HP/11kW 230V, 3-Phase as an example.

1-3 Model Name

1-4 Serial Number

110ED23S W 14380001

1-5 Apply for After-sales Service by Mobile Device

1-5-1 Location of Service Link Label

Frame B

The service link label (service label) is located on the side of the case as shown in the image blow:

Frame C

Remove the front cover of the case and you will find the service link label (service label) which is located on the upper left corner as shown in the image below:

Frame D

Remove the front cover of the case and you will find the service link label (service label) which is located on the upper left corner as shown in the image below:

Frame E

Remove the front cover of the case and you will find the service link label (service label) which is located on the upper left corner as shown in the image below:

1-5-2 Service Link Label

Scan QR Code to apply

1. Find the QR code sticker (as shown above).
2. Run the $Q R$ code reader app on your smartphone.
3. Point your camera to the QR Code. Hold your camera steady so that the QR code comes into focus.
4. Access the Delta After-Sales Service website.
5. Fill in the information into the column marked with an orange star.
6. Enter the CAPTCHA and click "Submit" to complete the application.

Cannot find QR Code?

1. Open a web browser on your computer or smart phone.
2. Key in https://service.deltaww.com/ia/repair in address bar and press enter.
3. Fill in the information into the columns marked with an orange star.
4. Enter the CAPTCHA and click "Submit" to complete the application.

1-6 RFI Switch

The AC motor drive may emit the electrical noise. The RFI switch is used to suppress the interference (Radio Frequency Interference) on the power line. The RFI Switch of Frame C, D, E are at similar position (Frame B doesn't have a RFI Switch). Open the top cover to remove the RFI switch as shown in the image below.

Frame E

Isolating main power from ground:

When the power distribution system of the motor drive is a floating ground system (IT) or an asymmetric ground system (TN), the RFI short-circuit cable must be cut off. Cutting off the short-circuit cable also cuts off the internal RFI capacitor (filter capacitor) between the system's frame and the central circuits to avoid damaging the central circuits and (according to IEC 61800-3) reduce the ground leakage current.

Important points regarding ground connection

\boxtimes To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, the motor drive must be properly grounded during installation.
\square The diameter of the cables must meet the size specified by safety regulations.
\square The shielded cable must be connected to the ground of the motor drive to meet safety regulations.
\square The shielded cable can only be used as the ground for equipment when the aforementioned points are met.
\boxtimes When installing multiple sets of motor drives, do not connect the grounds of the motor drives in series. As shown below

Pay particular attention to the following points:
च After turning on the main power, do not cut the RFI short-circuit cable while the power is on.
\boxtimes Make sure the main power is turned off before cutting the RFI short-circuit cable.
V Cutting the RFI short-circuit cable will also cut off the conductivity of the capacitor. Gap discharge may occur once the transient voltage exceeds 1000 V .

If the RFI short-circuit cable is cut, there will no longer be reliable electrical isolation. In other words, all controlled input and outputs can only be seen as low-voltage terminals with basic electrical isolation. Also, when the internal RFI capacitor is cut off, the motor drive will no longer be electromagnetic compatible.
∇ The RFI short-circuit cable may not be cut off if the main power is a grounded power system.
च The RFI short-circuit cable has to be cut off while conducting high voltage tests. When conducting a high voltage test to the entire facility, the main power and the motor must be disconnected if leakage current is too high.

Floating Ground System (IT Systems)

A floating ground system is also called IT system, ungrounded system, or high impedance/resistance (greater than 30Ω) grounding system.
\square Disconnect the ground cable from the internal EMC filter.
\square In situations where EMC is required, check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase security.

■ Do not install an external RFI/EMC filter, the EMC filter will pass through a filter capacitor, thus connecting power input to ground. This is very dangerous and can easily damage the motor drive.

Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not cut the RFI short-circuit cable while the input terminal of the motor drive carries power. In the following four situations, the RFI short-circuit cable must be cut off. This is to prevent the system from grounding through the RFI capacitor, damaging the motor drive.

RFI short-circuit cable must be cut off

1. Grounding at a corner in a triangle configuration

2. Grounding at one end in a single-phase configuration

3. Grounding at a midpoint in a polygonal configuration

4. No stable neutral grounding in a three-phase autotransformer configuration

Use RFI short-circuit

Internal grounding through RFI capacitor, which reduces electromagnetic radiation. In a situation with higher requirements for electromagnetic compatibility, and using a symmetrical grounding power system, an EMC filter can be installed. For example, the diagram on the right is a symmetrical grounding power system.

1-7 Dimensions

Frame B

VFD022ED21S, VFD037ED21S, VFD040ED23S/43S

SEE DETAIL B

DETAILA
DETAIL B
(MOUNTING HOLE) (MOUNTING HOLE)

DIMENSIONAL
UNIT:mm[inch]

FRAME	W	W1	H	H 1	H 2	D	$\mathrm{D} 1 *$	S 1	A	B	C
B	193.5	162.5									
$[7.60]$	260.0										
$[6.39]$	$[10.22]$	247.0	$[9.71]$	230.0	$[9.04]$	133.5					
$[5.25]$	58.0										
$[2.28]$	6.5	$60.26]$	138.6	$[5.46]$	67.6						
$[2.66]$	17.6										
$[0.69]$											

*D1: This dimension is for flange mounting application reference

Frame C
VFD055ED23S/43S, VFD075ED23S/43S, VFD110ED23S/43S, VFD150ED43S, VFD185ED43S

$\varnothing 1$ SEE DETAIL B

DETAILA
S1
DETAIL B
(MOUNTING HOLE)

DIMENSIONAL
UNIT:mm[inch]

FRAME	W	W1	H	H1	H2	D	D1*	S1	$\varnothing 1$	$\varnothing 2$
C	${ }_{\text {[9.25] }}$	${ }_{\text {[8.03] }}^{204.0}$	${ }_{\text {[13.78] }}^{350.0}$	${ }_{\substack{337.0 \\[13.27]}}$	${ }_{\text {col }}^{320.0}$	${ }_{\text {l }}^{14.750}$	${ }^{\text {co.0 }}$ [2.76]	${ }_{\substack{6.5 \\ 10.26]}}$	${ }^{19.7}{ }^{19.78]}$	${ }_{\text {a }}^{28.3}$

*D1: This dimension is for flange mounting application reference

Frame D
VFD150ED23S, VFD185ED23S, VFD220ED23S/43S, VFD300ED43S

SEE DETAIL B

DETAILA
(MOUNTING HOLE)

DETAIL B
(MOUNTING HOLE)

DIMENSIONAL
UNIT:mm[inch]

FRAME	W	W1	H	H1	H2	D	D1*	S1	$\varnothing 1$	$\varnothing 2$	Ø3
D	$\begin{aligned} & 255.0 \\ & {[10.04]} \end{aligned}$	$\begin{aligned} & 226.0 \\ & {[8.90]} \end{aligned}$	$\begin{aligned} & 403.8 \\ & {[15.90]} \end{aligned}$	$\begin{aligned} & 384.0 \\ & {[15.12]} \end{aligned}$	$\begin{aligned} & 360.0 \\ & {[14.17]} \end{aligned}$	$\begin{aligned} & 178.0 \\ & {[7.01]} \end{aligned}$	$\begin{gathered} 94.0 \\ {[3.70]} \end{gathered}$	$\begin{gathered} 8.5 \\ {[0.33]} \end{gathered}$	$\begin{aligned} & 17.5 \\ & {[0.69]} \end{aligned}$	$\begin{aligned} & 32.0 \\ & {[1.26]} \end{aligned}$	$\stackrel{\text { 26.0 }}{\text { [1.02] }}$

*D1: This dimension is for flange mounting application reference

Frame E
VFD300ED23S, VFD370ED23S/43S, VFD450ED43S, VFD550ED43S, VFD750ED43S

DIMENSIONAL
UNIT:mm[inch]

FRAME	W	W1	H	H1	H2	D	D1*	D2	S1	S2
E	${ }_{\substack{330.0 \\[1299]}}$	${ }_{\text {2 }}^{285.0}$	${ }_{\text {che }}^{550.0}$	$\begin{aligned} & 525.0 \\ & {[20.67]} \end{aligned}$	$\begin{gathered} 492.0 \\ {[19.37]} \end{gathered}$	${ }_{[10.76]}^{27.4}$	${ }_{\text {107,2 }}^{10.2]}$	${ }_{\text {c }}^{16.0}{ }^{\text {[0.6] }}$		18.0) [0.71]

*D1: This dimension is for flange mounting application reference.

Built-In Digital Keypad

KPED-LE01

02 Installation

2-1 About Installation

\square NOTE

- Prevent fiber particles, scraps of paper, shredded wood saw dust, metal particles, etc. from adhering to the heat sink
\square Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separation between the AC motor drives to prevent mutual heating and to prevent the risk of fire accident.

Install the AC motor drive in Pollution Degree 2 environments only: normally only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.

The image below is for reference only.

2-2 Minimum mounting clearance

Horsepower	Width mm (inch)	Height mm (inch)
$3-5 \mathrm{HP}$	$50(2)$	$150(6)$
$7.5-2 \mathrm{HP}$	$75(3)$	$175(7)$
$25-30 \mathrm{HP}$	$75(3)$	$200(8)$
$40-100 \mathrm{HP}$	$75(3)$	$200(8)$

Frame	Capacity	Model No.
\mathbf{B}	$3.0-5.0 H P$	VFD022ED21S, VFD037ED21S,VFD040ED23S/43S
\mathbf{C}	$7.2-5 \mathrm{~kW})$	VFD055ED23S/43S, VFD075ED23S/43S,VFD110ED23S/43S,
$(5.5-11 \mathrm{~kW})$	VFD150ED43S, VFD185ED43S	
\mathbf{D}	$20-40 \mathrm{HP}$	VFD150ED23S, VFD185ED23S, VFD220ED23S/43S
\mathbf{E}	$40-30 \mathrm{~kW})$	VFD300ED43S
	$(30-75 \mathrm{~kW})$	VFD300ED23S, VFD370ED23S/43S, VFD450ED43S,
VFD550ED43S, VFD750ED43S		

NOTE

The minimum mounting clearances stated in the table above applies to $A C$ motor drives frame B, C, D and E. A drive which fails to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problem.

Model No.	Air flow rate for cooling						Power Dissipation AC motor drive		
	Flow Rate(cfm)			Flow Rate(m3/hr)			Power Dissipation		
	External	Internal	Total	External	Internal	Total	Loss External (Heat Sink)	Internal	Total
VFD022ED21S	13.7	-	13.7	23.3	-	23.3	60	36	96
VFD037ED21S	23.9	-	23.9	40.7	-	40.7	84	46	130
VFD040ED23S	23.9	-	23.9	40.7	-	40.7	133	49	182
VFD055ED23S	48.5	-	48.5	82.4	-	82.4	212	67	279
VFD075ED23S	48.5	-	48.5	82.4	-	82.4	292	86	379
VFD110ED23S	47.9	-	47.9	81.4	-	81.4	355	121	476
VFD150ED23S	64.6	-	64.6	109.8	-	109.8	490	161	651
VFD185ED23S	102.3	-	102.3	173.8	-	173.8	638	184	822
VFD220ED23S	102.8	-	102.8	174.7	-	174.7	723	217	939
VFD300ED23S	179	30	209	304	51	355	932	186	1118
VFD370ED23S	179	30	209	304	51	355	1112	222	1334
VFD040ED43S	13.7	-	13.7	23.3	-	23.3	123	42	165
VFD055ED43S	48.5	-	48.5	82.4	-	82.4	185	55	240
VFD075ED43S	48.5	-	48.5	82.4	-	82.4	249	71	320

Ch02 Installation | VFD-ED

VFD110ED43S	47.9	-	47.9	81.4	-	81.4	337	94	431
VFD150ED43S	46.1	-	46.1	78.4	-	78.4	302	123	425
VFD185ED43S	46.1	-	46.1	78.4	-	78.4	391	139	529
VFD220ED43S	102.8	-	102.8	174.7	-	174.7	642	141	783
VFD300ED43S	83.7	-	83.7	142.2	-	142.2	839	180	1019
VFD370ED43S	179	30	209	304	51	355	803	252	1055
VFD450ED43S	179	30	209	304	51	355	1014	270	1284
VFD550ED43S	179	30	209	304	51	355	1244	275	1519
VFD750ED43S	186	30	216	316	51	367	1541	338	1878

Derating Capacity of Carrier Frequency (Fc):

Frame	B	C	D	E	E
Fc(kHz)	$2.2 \sim 4 \mathrm{~kW}$	$5.5 \sim 11 \mathrm{~kW}$	$15 \sim 22 \mathrm{~kW}$	$30 \sim 45 \mathrm{~kW}$	$55 \sim 75 \mathrm{~kW}$
0	100%	100%	100%	100%	100%
1	100%	100%	100%	100%	100%
2	100%	100%	100%	100%	100%
3	100%	100%	100%	100%	100%
4	100%	100%	100%	100%	100%
5	100%	100%	100%	100%	100%
6	100%	100%	100%	100%	100%
7	100%	100%	100%	90.73%	-
8	100%	100%	100%	82.20%	-
9	94.24%	100%	92.32%	74.31%	-
10	88.92%	100%	85.21%	-	-
11	82.54%	95.35%	78.63%	-	-
12	78.08%	91.02%	72.53%	-	-
13	73.95%	86.98%	66.87%	-	-
14	70.14%	84.14%	61.62%	-	-
15	66.61%	80.67%	56.74%	-	-

Derating Curve of Carrier Frequency (Fc):

lo derating curve

Ambient Temperature Derating Curve:
Temperature derating curve

Altitude Derating Curve:

Altitude Derating Curve

03 Wiring

After removing the front cover, examine if the power and control terminals are clearly noted. Read following precautions before wiring.

च Make sure that power is only applied to the R/L1, S/L2, and T/L3 terminals. Failure to comply may result in damage to the equipment. The voltage and current should lie within the range as indicated on the nameplate (Chapter 1-1).
\square All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
\square Make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration.

च It is crucial to turn off the AC motor drive power before any wiring installation is made. A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off therefore it is suggested for users to measure the remaining voltage before wiring. For your personal safety, do not perform any wiring before the voltage drops to a safe level $<25 \mathrm{Vdc}$. Wiring installation with remaining voltage condition may cause sparks and short circuit.
च Only qualified personnel familiar with AC motor drives is allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock.

च When wiring, please choose the wires with specification that comply with local regulation for your personal safety.
\square Check following items after finishing the wiring:

1. Are all connections correct?
2. Any loosen wires?
3. Any short-circuits between the terminals or to ground?

3-1 Wiring

D, NOTE

RB and RCarethe multifunction output terminals

Wiring Diagram of Frame C \& D It provides 3-phase power

[^0]

See page 3-5 for the wiring diagram of Emergency Power Supply (EPS).

Figure 1

Switching between two modes: SINK(NPN) ISOURCE(PNP)

(3) Sink Mode with external power

2 Source Mode with internal power (+24VDC)

4 Source Mode with external power

Figure 2. Emergency Power Supply (EPS) system wiring diagrams

For Frame B, C, D \& E:
(1) Single phase UPS or battery can only be used on the main power supply

For Frame C \& D:
(2) When the voltage of the main power supply is lower than
$140 \mathrm{Vdc}(230 \mathrm{~V}$ models $) / 280 \mathrm{Vdc}(460 \mathrm{~V}$ models $)$,
have the control power supply connected to a single phase UPS or a battery.

Timing diagram of M.C.
(Magnetic Contactor)

- Before using emergency power, close M.C. (1), M.C.(3) and keep, M.C.(2)open.
- Close M.C.(1)before you close M.C.3.
- Before removing the battery, open M.C. 1 and M.C.(3)
- Before you close M.C.(2) open M.C.(1) and M.C.(3.)

Notes about the emergency power supply (EPS).

Be aware of the following conditions when emergency power is ON :

1. Fan will not run to save energy from EPS.
2. Parameter setting will not be saved. When the power is turned off then applies again, the parameter setting will be gone.
3. Operate by the speed set at Pr.06-44.
4. Protections for low voltage and phase loss in NOT available.
5. Display DC-BUS voltage by Pr.06-29

3-2 System Wiring Diagram

04 Main Circuit Terminals

Main input power terminals:
$\boxtimes \quad$ Do not connect 3-phase model to one-phase power. R/L1, S/L2 and T/L3 has no phase-sequence requirement, it can be used upon random selection.
\square A NFB must be installed between the 3-phase power input terminals and the main circuit terminals (R/L1, S/L2, T/L3). It is recommended to add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of the AC motor drive. Both ends of the MC should have an R-C surge absorber.
$\square \quad$ Fasten the screws in the main circuit terminal to prevent sparks condition made by the loose screws due to vibration.
$\boxtimes \quad$ Use voltage and current within the specification in Chapter 8.
$\boxtimes \quad$ When using a general ELB (Earth Leakage Breaker), select a current sensor with sensitivity of 200 mA or above and not less than 0.1 -second operation time to avoid nuisance tripping. When choosing an ELB designed for the AC motor drive, choose a current sensor with sensitivity of 30mA or above.
\square Use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube.
\boxtimes Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by sending RUN/STOP command via control terminals or keypad. If you still need to run/stop AC motor drives by turning power ON/OFF, it is recommended to do so only ONCE per hour
Output terminals of the main circuit:
\boxtimes When it is necessary to install a filter at the output side of terminals U/T1, V/T2, W/T3 on the AC motor drive. Use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance).
\boxtimes DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.
\square Use well-insulated motors to prevent any electric leakage from motors.
Terminals [+1, +2] for connecting DC reactor. Terminals [+1, +2/B1] for connecting brake resistor.
$\boxtimes \quad$ These terminals are to connect to a DC reactor to improve the power factor and reduce harmonics. At the factory setting, a jumper is connected to these terminals. Remove that jumper before connecting to a DC reactor.

凹 Models above 22kW don't have a built-in brake resistor. To improve resistance ability, connect an external, optional brake resistor
\boxtimes When not in use, leave terminals +2/B1, (-) open.
ஏ Short-circuiting [B2] or [-] to [+2/B1] will damage the motor drive. Do NOT do that.

4-1 Main Circuit Diagram

Frame B

Frame C \& D
DC Reactor

Frame E

Terminal Symbol

Explanation of Terminal Function

Backup power/ Emergency power connection terminal.
*1:EPS (Emergency Power Supply) input terminal supports only frame C \& D.
R/L1, S/L2, T/L3 AC line input terminals 3-phase.
U/T1, V/T2, W/T3 AC drive output terminals for connecting 3-phase induction motor. $+1,+2 / \mathrm{B} 1 \quad$ Connections for DC reactor to improve the power factor. Remove the jumper before installing a DC reactor. (Frame E has a DC reactor built-in.).
+2/B1, B2 Connections for brake resistor (optional).
$\bigcirc \mathrm{E}$
Earth connection, to comply with local regulations.

4-2 Main Circuit Terminals Specifications

Frame B

Main circuit terminals:
$R / L 1, S / L 2, T / L 3, U / T 1, V / T 2, W / T 3,+(D C+),-(D C-), B 1, B 2 \perp$

Models	Wire Gauge		 Torque ($\pm 10 \%$)
	Max. Wire Gauge	Min. Wire Gauge	
VFD022ED21S	$\begin{aligned} & \text { 10AWG } \\ & {\left[5.3 \mathrm{~mm}^{2}\right]} \end{aligned}$	14AWG	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{kgf-cm} \\ (15.6 \mathrm{lbf}-\mathrm{in}) \\ (1.7 \mathrm{Nm}) \end{gathered}$
VFD040ED43S		$\left[2.1 \mathrm{~mm}^{2}\right]$	
VFD037ED21S		12AWG	
VFD040ED23S		$\left[3.3 \mathrm{~mm}^{2}\right]$	

UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ wire. Use copper wire only.
NOTE:

1. Figure 1 shows the terminal specification.
2. Figure 2 shows the specification of
insulated heat shrink tubing that comply with UL (600V, YDPU2).

Figure 2

Frame C

Frame D

Main circuit terminals: R/L1,S/L2,T/L3,U/T1,V/T2,W/T3,+1,+2/B1,-, B2,			
Models	Wire Gauge		Screw Size \& Torque ($\pm 10 \%$)
	Max. Wire Gauge	Min. Wire Gauge	
VFD150ED23S	$\begin{gathered} 2 \mathrm{AWG} \\ {\left[33.6 \mathrm{~mm}^{2}\right]} \end{gathered}$	4AWG [$21.1 \mathrm{~mm}^{2}$]	$\begin{gathered} \text { M6 } \\ 50 \mathrm{kgf}-\mathrm{cm} \\ (43.4 \mathrm{lbf}-\mathrm{in}) \\ (4.9 \mathrm{Nm}) \end{gathered}$
VFD300ED43S			
VFD185ED23S		3AWG[$26.7 \mathrm{~mm}^{2}$]	
VFD220ED43S		6AWG[$13.3 \mathrm{~mm}^{2}$]	
VFD220ED23S		2AWG[$33.6 \mathrm{~mm}^{2}$]	
UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ wire. Use copper wire only.			
NOTE:			
1. Figure 1 shows the terminal specification.			
2. Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600V, YDPU2).			
D14 M			Ring lug Heat Shrink Tube WIRE
	Figure 1		gure 2

Frame E

05 Control Terminals

Remove the top cover before wiring the multi-function input and output terminals
The motor drives' figures shown below are for reference only; the actual motor drives may look different.

5-1 Remove the cover before wiring

Frame B, C \& D:

Frame E
Step 1
Loosen the 2 screws,
diren follow the
arrow of the
to remove
the top
cover

5-2 Specifications of the Control Terminal

5-3 Control Circuit Terminal Sockets:

Terminal sockets A, B, C
Torque force: $2 \mathrm{~kg}-\mathrm{cm}$ [1.71b-in.] (0.20 Nm)
Wire gauge: 28~14AWG [0.08~2.07mm²]

Terminal socket D :

Torque force: $2 \mathrm{~kg}-\mathrm{cm}$ [1.7lb-in.] (0.20 Nm)

Terminal socket E:

Torque force: $5.2 \mathrm{~kg}-\mathrm{cm}$ [4.5lb-in.] (0.51 Nm)
Wire gauge: 28~12AWG [0.08~3.33mm²]
To comply with UL standards, copper wires which are able to sustain $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ environments must be used in the installation.

Control Board Switch

AUI2		Frequency(Pr.01-00)
ACM	Analog signal common terminal control	Analog signal terminal
RA	Multi-function relay output A (N.O.)	
RB	Multi-function relay output A (N.C.)	
RC	Multi-function relay output B (Error indication by factory setting)	
MRA	Multi-function output terminal (N.O.)	1. User-defined function 2. Resistive Load
MRB	Multi-function output terminal (N.C.)	3A(N.O.)/3A(N.C.) 250VAC 5A(N.O.)/3A(N.C.) 30VDC (min. 5 VDC, 10 mA)
MRC	Multi-function output terminal (Operating Indication by factory setting)	To output different kinds of signal such as the motor drive is in operation, reaching the frequency, overload indication.
R1A	Multi-function output terminal A (N.O.)	
R2A	Multi-function output terminal A (N.O.)	
R12C	Multi-function output terminal (No function by factory setting)	
SG1+	Modbus RS-485	SG1+ switch: terminator 120 ohm (factory setting) /
SG1-	Modbus RS-485	
CAN_L	CAN Bus	DIP Switch: terminator 120 ohm (factory setting)/
CAN_H	CAN Bus	
MO1	Multi-function output terminal 1 (photocoupler)	The AC motor drive releases various monitoring signals, such as drive in operation, reaching frequency and overload indication via a transistor (open collector).
MO2	Multi-function output terminal 2 (photocoupler)	

MCM	Multi-function output common terminal (photocoupler)	Max 48Vdc 50mA
AFM1		$0 \sim 10 \mathrm{~V}$, Max. output current: 2 mA , Max. load: $5 \mathrm{k} \Omega$ -10~10V, Max. output current: 2 mA , Max. load : $5 \mathrm{k} \Omega$ Output current 2mA max Resolution 0~10V corresponds to the Max. operating frequency. Range: $0 \sim 10 \mathrm{~V} \rightarrow-10 \sim+10 \mathrm{~V}$
AFM2		$0 \sim 10 \mathrm{~V}$, Max. Output current: 2 mA , Max. load: $5 \mathrm{~K} \Omega$ -10~10V, Max. output current: 2 mA , Max. load: $5 \mathrm{k} \Omega$ Output current:: 2mA max Resolution: 0~10V corresponds to the Max. operating frequency. Range: $0 \sim 10 \mathrm{~V} \rightarrow-10 \sim+10 \mathrm{~V}$
RJ-45	PIN 1,2,6,7 : Reserved PIN PIN 4: SG- PIN 5: SG+	3: SGND PIN 8: EV
SW2	Switching USB port	DIP Switch: NRM (factory setting) / PRG (this side of the switch is to update firmware and is intended for qualified motor drive service personnel only. Do NOT try to update by yourself.

06 Optional Accessories

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive would substantially improve the drive's performance. Please select an applicable accessory according to your need or contact the local distributor for suggestion.

6-1 Brake Resistors \& Brake Units used in AC motor Drives

$\begin{aligned} & \text { \& } \\ & \frac{\pi}{0} \\ & \hline \mathbf{x} \end{aligned}$	Applicable Motor				125\% Braking	que $30 \% \mathrm{ED}$						
	Model	Braking Torque *3 (kg-m)	Brake Unit		Resistor value spec. for each AC motor Drive	Braking Resistor series for each Brake Unit			Braking Current (A)	Max. Brake Torque *2		
			VFDB* ${ }^{5}$	Quan- tity		model \#*4	Quanti -ty	Wring Method		Min. Resistor Value(Ω)	Max. Total Braking Current(A)	Peak Power (kW)
230 V	VFD022ED21S	1.5			1000W 75Ω	BR1K0W075	1		5.1	38.0	10	3.8
	VFD037ED21S	2.5			2000W 37.5ת	BR1K0W075	2	2 parallel	10.1	19.0	20	7.6
	VFD040ED23S	2.5			2000W 37.5Ω	BR1K0W075	2	2 parallel	10.1	19.0	20	7.6
	VFD055ED23S	3.7			3000W 25Ω	BR1K0W075	3	3 parallel	15.2	15.6	24.4	9.3
	VFD075ED23S	5.1			3000W 25Ω	BR1K0W075	3	3 parallel	15.2	11.5	33	12.5
	VFD110ED23S	7.5			5000W 15Ω	BR1K0W075	5	5 parallel	25.3	9.5	40	15.2
	VFD150ED23S	10.2			6000W 13ת	BR1K5W013	4	2 serial 2 parallel	29.2	8.3	46	17.5
	VFD185ED23S	12.2			8000W 9.4ת	BR1K0W075	8	8 parallel	38.0	5.8	66	25.1
	VFD220ED23S	14.9			8000W 9.4ת	BR1K0W075	8	8 parallel	40.5	5.8	66	25.1
	VFD300ED23S	20.3	2015	2	9000W 6.5ת	BR1K5W013	8	2 serial 4 parallel	58.5	4.8	80	30.4
	VFD370ED23S	25.1	2022	2	14000W 5.4Ω	BR1K0W075	14	14 parallel	70.9	3.2	120	45.6
460V	VFD040ED43S	2.7			1500W 280Ω	BR750W140	2	2 serial	2.7	54.3	14	10.6
	VFD055ED43S	3.7			2000W 150Ω	BR1K0W075	2	2 serial	5.1	48.4	15.7	11.9
	VFD075ED43S	5.1			4000W 75ת	BR1K0W075	4	2 serial 2 parallel	10.1	48.4	15.7	11.9
	VFD110ED43S	7.5			4000W 75ת	BR1K0W075	4	2 serial 2 parallel	10.1	30.8	24.7	18.8
	VFD150ED43S	10.1			6000W 50,	BR1K0W075	6	2 serial 3 parallel	15.2	25.0	30.4	23.1
	VFD185ED43S	12.5			8000W 37.5ת	BR1K0W075	8	$2 \text { serial }$ 4 parallel	20.3	20.8	36.5	27.7
	VFD220ED43S	14.9			8000W 37.5ת	BR1K0W075	8	$\begin{gathered} 2 \text { serial } \\ 4 \text { parallel } \end{gathered}$	20.3	19.0	40	30.4
	VFD300ED43S	20.3			12000W 26Ω	BR1K5W043	8	4 serial 2 parallel	29.2	14.1	54	41.0
	VFD370ED43S	25.0	4045	1	14000W 21.4ת	BR1K1W024	14	2 serial 7 parallel	35.5	12.7	60	45.6

	VFD450ED43S	30.4	4045	1	$16000 \mathrm{~W} 18.8 \Omega$	BR1K0W016	16	2 serial 8 parallel	40.5	12.7	60	45.6
	VFD550ED43S	37.2	4030	2	$20000 \mathrm{~W} 15 \Omega$	BR1K0W016	20	2 serial 10 parallel	50.7	9.5	80	60.8
VFD750ED43S	50.7	4045	2	$28000 \mathrm{~W} 10.7 \Omega$	BR1K0W016	28	2 serial 14 parallel	70.9	6.3	120	91.2	

${ }^{* 1}$ Calculation of 125% brake torque: (kW)*125\%*0.8; where 0.8 is the motor efficiency.
Since there is a resistor limit of power consumption, the longest operation time for $30 \% \mathrm{ED}$ is 30 sec (On: 30sec/ Off: 70sec).
${ }^{* 2}$ Refer to the Brake Performance Curve for "Operation Duration \& ED" vs. "Braking Current".
${ }^{* 3}$ The calculation of the braking torque I s based on a 4-pole motor (1800 rpm).
${ }^{* 4}$ To dissipate heat, a resistor of 400 W or lower should be fixed to the frame and maintain the surface temperature below $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right)$; a resistor of 1000 W and above should maintain the surface temperature below $600^{\circ} \mathrm{C}(1112$ ${ }^{\circ} \mathrm{F}$). If the surface temperature is higher than the temperature limit, install more heat dissipating system or increase the size of the resistor.
${ }^{* 5}$ Refer to VFDB series Braking Module Instruction for more detail on braking resistor.

NOTE

1. Select the recommended resistance value (Watt) and the duty-cycle value (ED \%).

Definition for Brake Usage ED\%
Explanation: The definition of the brake usage ED (\%) is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking. When the brake resistor heats up, the resistance would increase with temperature, and brake torque would decrease accordingly. Recommended cycle time is one minute.

Note1: When using the AC drive with DC reactor, please refer to wiring diagram in the AC drive user manual for the wiring of terminal $+(P)$ of Braking unit.
Note2: Do NOT wire terminal -(N) to the neutral point of power system.
For safety consideration, install an overload relay between the brake unit and the brake resistor. In conjunction with the magnetic contactor (MC) prior to the drive, it can perform complete protection against abnormality. The purpose of installing the thermal overload relay is to protect the brake resistor from damage due to frequent brake, or due to brake unit keeping operating resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent damaging the brake resistor.
2. If damage to the drive or other equipment is due to the fact that the brake resistors and the brake modules in use are not provided by Delta, the warranty will be void.
3. Take into consideration the safety of the environment when installing the brake resistors. If the minimum resistance value is to be utilized, consult local dealers for the calculation of the Watt figures.
4. When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table).
5. This chart is for normal usage; if the AC motor drive is applied for frequent braking, it is suggested to enlarge $2 \sim 3$ times of the Watts.
6. Thermal relay selection:

Thermal Relay:

Thermal relay selection is based on its overload capability. A standard braking capacity of ED is 10% ED (Tripping time=10s). The figure on the left is an example of $460 \mathrm{~V}, 110 \mathrm{kw}$ AC motor drive. It requires the thermal relay to take 260% overload capacity for 10 sec (hot starting) and the braking current is 126A. In this case, user should select a rated 50A thermal relay. The property of each thermal relay may vary among different manufacturers. Read carefully the user guide of a thermal relay before using it. .

6-2 Non-fuse Circuit Breaker

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a. The rated current of a breaker shall be 2~4 times of the maximum rated input current of AC motor drive.

3-phase	
Model	Recommended non-fuse breaker(A)
VFD022ED21S	50
VFD037ED21S	75
VFD040ED23S	40
VFD055ED23S	50
VFD075ED23S	60
VFD110ED23S	100
VFD150ED23S	125
VFD185ED23S	150
VFD220ED23S	175
VFD300ED23S	250
VFD370ED23S	300

3-phase	
Model	Recommended non-fuse breaker(A)
VFD040ED43S	30
VFD055ED43S	35
VFD075ED43S	40
VFD110ED43S	50
VFD150ED43S	60
VFD185ED43S	75
VFD220ED43S	100
VFD300ED43S	125
VFD370ED43S	150
VFD450ED43S	200
VFD550ED43S	250
VFD750ED43S	350

6-3 Fuse Specification Chart

- Use only the fuses comply with UL certificated.
- Use only the fuses comply with local regulations.

Model	Input Current (A)	Line Fuse	
		1 (A)	Bussmann P/N
VFD022ED21S	26	60	JJN-60
VFD037ED21S	37	90	JJN-90
VFD040ED23S	20	50	JJN-50
VFD055ED23S	23	60	JJN-60
VFD075ED23S	30	80	JJN-80
VFD110ED23S	47	125	JJN-125
VFD150ED23S	56	150	JJN-150
VFD185ED23S	73	175	JJN-175
VFD220ED23S	90	225	JJN-225
VFD300ED23S	132	300	JJN-300
VFD370ED23S	161	400	JJN-400
VFD040ED43S	11.5	35	JJS-35
VFD055ED43S	14	40	JJS-40
VFD075ED43S	17	45	JJS-45
VFD110ED43S	24	60	JJS-60
VFD150ED43S	30	80	JJS-80
VFD185ED43S	37	90	JJS-90
VFD220ED43S	47	110	JJS-110
VFD300ED43S	58	150	JJS-150
VFD370ED43S	80	200	JJS-200
VFD450ED43S	100	250	JJS-250
VFD550ED43S	128	300	JJS-300
VFD750ED43S	165	400	JJS-400

6-4 AC/ DC Reactor

AC Input/ Output Reactor

200V~230V/ 50~60Hz (Single Phase Power)

Type	KW	HP	Rated Amps (Arms)	Max. Continuous Amps (Arms)	3% impedance (mH)	5% impedance (mH)	Built-in DC Reactor	3\% Input AC reactor Delta Part\#
022	2.2	3	12	24	0.919	1.531	X	N / A
037	3.7	5	17	34	0.649	1.081	X	N / A

$200 \mathrm{~V} \sim 230 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$ (Three-phase power)

Type	KW	HP	Rated Amps (Arms)	Continuous Amps (Arms)	3% impedance (mH)	5% impedance (mH)	Built-in DC Reactor	3\% Input AC reactor Delta Part\#
040	4	5	20	40	0.551	0.919	X	N / A
055	5.5	7.5	24	48	0.459	0.766	X	N / A
075	7.5	10	30	60	0.320	0.534	X	N / A
110	11	15	45	90	0.216	0.359	X	N / A
150	15	20	58	116	0.163	0.271	X	N / A
185	18.5	25	77	154	0.143	0.239	X	N / A
220	22	30	87	174	0.127	0.211	X	N / A
300	30	40	132	264	0.084	0.139	O	N / A
370	37	50	161	322	0.068	0.114	O	N / A

$380 \mathrm{~V} \sim 460 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$ (Three-phase power)

Type	KW	HP	Rated Amps (Arms)	Continuous. Amps $($ Arms $)$	3% impedance (mH)	5% impedance (mH)	Built-in DC Reactor	3% Input AC reactor Delta Part\#
040	4	5	11.5	23	1.838	3.063	X	N / A
055	5.5	7.5	13	26	1.626	2.710	X	N / A
075	7.5	10	17	34	1.243	2.072	X	N / A
110	11	15	23	46	0.919	1.531	X	N / A
150	15	20	30	60	0.704	1.174	X	N / A
185	18.5	25	38	76	0.556	0.927	X	N / A
220	22	30	45	90	0.470	0.783	X	N / A
300	30	40	58	116	0.364	0.607	X	N / A
370	37	50	80	160	0.264	0.440	O	N / A
450	45	60	100	200	0.211	0.352	O	N / A
550	55	75	128	256	0.165	0.275	O	N / A
750	75	100	165	330	0.128	0.213	O	N / A

DC Input Reactor

200V~230V/50~60Hz (Three-phase power)

Type	KW	HP	Rated Amps (Arms)	Max. Continuous Amps (Arms)	DC Reactor (mH)	DC Reactor Delta Part\#
040	4	5	20	40	1.273	$\mathrm{~N} / \mathrm{A}$
055	5.5	7.5	24	48	1.061	$\mathrm{~N} / \mathrm{A}$
075	7.5	10	30	60	0.740	$\mathrm{~N} / \mathrm{A}$
110	11	15	45	90	0.498	$\mathrm{~N} / \mathrm{A}$
150	15	20	58	116	0.375	$\mathrm{~N} / \mathrm{A}$
185	18.5	25	77	154	0.331	$\mathrm{~N} / \mathrm{A}$
220	22	30	87	174	0.293	$\mathrm{~N} / \mathrm{A}$
300	30	40	132	264	0.193	$\mathrm{~N} / \mathrm{A}$
370	37	50	161	322	0.158	$\mathrm{~N} / \mathrm{A}$

$380 \mathrm{~V} \sim 460 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$ (Three-phase power)

Type	KW	HP	Rated Amps (Arms)	Max. Continuous Amps (Arms)	DC Reactor (mH)	DC Reactor Delta Part\#
040	4	5	11.5	23	4.244	N/A
055	5.5	7.5	13	26	3.754	$\mathrm{~N} / \mathrm{A}$
075	7.5	10	17	34	2.871	$\mathrm{~N} / \mathrm{A}$
110	11	15	23	46	2.122	$\mathrm{~N} / \mathrm{A}$
150	15	20	30	60	1.627	$\mathrm{~N} / \mathrm{A}$
185	18.5	25	38	76	1.284	$\mathrm{~N} / \mathrm{A}$
220	22	30	45	90	1.085	$\mathrm{~N} / \mathrm{A}$
300	30	40	58	116	0.842	$\mathrm{~N} / \mathrm{A}$
370	37	50	80	160	built-in	N / A
450	45	60	100	200	built-in	N / A
550	55	75	128	256	built-in	N / A
750	75	100	165	330	built-in	N / A

THD (Total Harmonic Distortion)

Motor Drive Spec.	Without Built-In Reactor				With Built-in DC Reactor			
Reactor Spec.	3% Input AC Reactor DC Reactor	DC Reactor $+3 \%$ Input Reactor	DC $+5 \%$ Input Reactor	3% Input Reactor				
THD	44%	46%	34%	30%	34%			
Note:	THD may vary due to different installation conditions and environment (wires, motors).							

According to IEC61000-3-12, DC Reactor is designed with 4\% system impedance, and AC Reactor is designed with 3% system impedance.

6-5 Zero Phase Reactor

unit: mm (inch)

Model	A	B	C	D	E	F	G(Ø)	Torque
RF008X00A	98	73	36.5	29	56.5	86	5.5	$8 \sim 10 \mathrm{kgf} / \mathrm{cm}$
	(3.858)	(2.874)	(1.437)	(1.142)	(2.224)	(3.386)	(0.217)	
RF004X00A	110	87.5	43.5	36	53	96	5.5	$8 \sim 10 \mathrm{kgf} / \mathrm{cm}$

unit: mm (inch)

model	A	B	C	D	E	F	$\mathbf{G}(\boldsymbol{\varnothing})$	H	Torque
RF002X00A	200	172.5	90	78	55.5	184	5.5	22	$40 \sim 45 \mathrm{kgf} / \mathrm{cm}$
	(7.874)	(6.791)	(3.543)	(3.071)	(2.185)	(7.244)	(0.217)	(0.866)	

unit: mm (inch)

model	A	B	C	D	E	F	G(Ø)	H	I
RF300X00A	$241(9.488)$	$217(8.543)$	$114(4.488)$	$155(6.102)$	$42(1.654)$	$220(8.661)$	$6.5(0.256)$	$7.0(0.276)$	$20(0.787)$

Reactor model (Note)	Recommended Wire Size		Wiring Method	Qty	Applicable Motor Drive

Note: 600V insulated cable wire

Diagram A

Put all wires through at least one core without winding
Zero Phase Reactor

Note 1: The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and diameter of cable fitted i.e. the cable must fit through the center hole of zero phase reactors.

Note 2: Only the phase conductors should pass through, not the earth core or screen.
Note3: When long motor output cables are used an output zero phase reactor may be required to reduce radiated emissions from the cable.

6-6 EMI Filter

The following table shows external EMC filter models for each ED-S series motor drive.
Choose corresponding zero phase reactor and applicable shielding cable according to required noise emission and electromagnetic disturbance rating, to make the best assembly and restrain electromagnetic disturbance. If radiation emission (RE) is ignored, and only needs conducted emission (CE) to reach EN55011 Class A on site, zero phase reactor does not need to add at input side, and it can reach the standard of EMC.

220 V models

VFD-ED			EMI Filter Model \#	Zero Phase Inverter		Carrier Frequen cy	EN12015	
Fra me	Motor Drive model \#	Rated Input		Input side (R/S/T)	Output side (U/V/W)		Conducted Emission	Radiation Emission
		(A)					Length of output shielded cable 50 m	
B	VFD022ED21S	24	B84142A0042R122	RF008X00A	-	Carrier frequency by factory setting	CLASS A	CLASS A
	VFD037ED21S	34	B84142A0042R122	RF008X00A	-		CLASSA	CLASSA
	VFD040ED23S	20	EMF035A23A	RF008X00A	-		CLASS A	CLASS A
C	VFD055ED23S	23	EMF056A23A	RF004X00A	-		CLASS A	CLASS A
	VFD075ED23S	30	EMF056A23A	RF004X00A	-		CLASS A	CLASS A
	VFD110ED23S	47	EMF056A23A	RF004X00A	-		CLASS A	CLASS A
D	VFD150ED23S	56	B84143D0150R127	RF002X00A	-		CLASS A	CLASS A
	VFD185ED23S	73	B84143D0150R127	RF002X00A	-		CLASS A	CLASS A
	VFD220ED23S	90	B84143D0150R127	RF002X00A	-		CLASS A	CLASS A
E	VFD300ED23S	132	B84143D0150R127	RF002X00A	-		CLASS A	CLASS A
	VFD370ED23S	161	B84143D0200R127	RF300X00A	-		CLASS A	CLASS A

460V models

VFD-ED			EMI Filter model \#	Zero Phase Reactor		Carrier Frequen cy	EN12015	
		Rated Input			Output		Conducted Emission	Radiation Emission
me	model \#	Current (A)		(R/S/T)	Side (U/V/W)		Length of output Shielded Cable 50 m	
B	VFD040ED43S	11.5	EMF018A43A	RF008X00A	-	Carrier Frequency by Factory Setting	CLASS A	CLASS A
C	VFD055ED43S	14	EMF033A43A	RF004X00A	-		CLASSA	CLASS A
	VFD075ED43S	17	EMF033A43A	RF004X00A	-		CLASS A	CLASS A
	VFD110ED43S	24	EMF033A43A	RF004X00A	-		CLASS A	CLASS A
	VFD150ED43S	30	B84143D0075R127	RF004X00A	-		CLASS A	CLASS A
	VFD185ED43S	37	B84143D0075R127	RF004X00A	-		CLASS A	CLASS A
	VFD220ED43S	47	B84143D0090R127	RF002X00A	-		CLASS A	CLASS A
D	VFD300ED43S	58	B84143D0090R127	RF002X00A	-		CLASS A	CLASS A
E	VFD370ED43S	80	B84143D0200R127	RF300X00A	-		CLASS A	CLASS A
	VFD450ED43S	100	B84143D0200R127	RF300X00A	-		CLASS A	CLASS A
	VFD550ED43S	128	B84143D0200R127	RF300x00A	-		CLASS A	CLASS A
	VFD750ED43S	165	B84143D0200R127	RF300x00A	-		CLASS A	CLASS A

EMI Filter Schematic Diagrams

EMI Filter model \#: EMF018A43A

EMI Filter model \#: EMF035A23A, EMF033A43A

EMI Filter model \#: EMF056A23A

EMI Filter model \#: B84143D0075R127; B84143D0090R127

EMI Filter model \#: B84143D0150R127

EMI Filter model \#: B84143D0200R127

EMI Filter model \#: B84142A0042R122

EMI Filter Installation

All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMI filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMI filter to have the best interference elimination performance.
We assure that it can comply with following rules when AC motor drive and EMI filter are installed and wired according to user manual:

- EN61000-6-4
- EN61800-3: 1996
- EN55011: (1991) Class A Group 1 (1st Environment, restricted distribution)
- European Standards: EN12015 \& EN12016

General precaution

1. EMI filter and AC motor drive should be installed on the same metal plate.
2. Install AC motor drive on footprint EMI filter or install EMI filter as close as possible to the AC motor drive.
3. Wire as short as possible.
4. Metal plate should be grounded.
5. The cover of EMI filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

Choose suitable motor cable and precautions

Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to observe the following precautions when selecting motor cable.

1. Use the cable with shielding (double shielding is the best).
2. The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
3. Remove any paint on metal saddle for good ground contact with the plate and shielding.

Figure 1

Figure 2

The length of motor cable

1. Required cable length when the motor drive is at full load.
a. Non-shielded cable: For models of $5.5 \mathrm{~kW}(7.5 \mathrm{HP})$ and below, the maximum cable length is $100 \mathrm{~m}(328 \mathrm{ft})$. For $7.5 \mathrm{~kW}(10 \mathrm{HP})$ and above, the maximum cable length is $200 \mathrm{~m}(656 \mathrm{ft})$
b. Shielded cable: For models of $5.5 \mathrm{kw}(7.5 \mathrm{HP})$ and below, the maximum cable length is 50 m (165 ft). For models of 7.5 kW (10 HP), the maximum cable length is 100 m (328 ft).
c. In order to be compatible with the European Standards EN12015 \& EN12016, it is required not to only follow the precautions mentioned on page6-10, but also required to satisfy one of the two conditions below:

- Use shielded cables
- The length of motor cable has to be shorter than 2 m (6 ft).

If the cable length is longer than the recommended lengths above, it will be necessary to install an output reactor.

NOTE

> If the length is too long, the stray capacitance between cables will increase and may cause leakage current. It will activate the protection of over current, increase leakage current or not insure the correction of current display. The worst case is that AC motor drive may damage.
> If more than one motor is connected to the AC motor drive, the total wiring length is the sum of the wiring length from AC motor drive to each motor.
> For the 460 V series AC motor drive, when an overload relay is installed between the drive and the motor to protect motor overheating, the connecting cable must be shorter than 50 m . However, an overload relay malfunction may still occur. To prevent the malfunction, install an output reactor (optional) to the drive or lower the carrier frequency setting (Pr.00-12).

2. Consequence of the surge voltages on the motor

When a motor is driven by an AC motor drive of PWM type, the motor terminals will experience surge voltages easily due to components conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages may reduce insulation quality. To prevent this situation, please follow the rules below:

- Use a motor with enhanced insulation.
- Connect an output reactor (optional) to the output terminals of the AC motor drive
- The length of the cable between AC motor drive and motor should be as short as possible (10 to 20 m or less)
- For models 7.5 hp and above:

Insulation level of motor	1000 V	1300 V	1600 V
460 VAC input voltage	$20 \mathrm{~m}(66 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$	$400 \mathrm{~m}(1312 \mathrm{ft})$
230 VAC input voltage	$400 \mathrm{~m}(1312 \mathrm{ft})$	$400 \mathrm{~m}(1312 \mathrm{ft})$	$400 \mathrm{~m}(1312 \mathrm{ft})$

- For models 5hp and less:

Insulation level of motor	1000 V	1300 V	1600 V
460VAC input voltage	$20 \mathrm{~m}(66 \mathrm{ft})$	$50 \mathrm{~m}(165 \mathrm{ft})$	$50 \mathrm{~m}(165 \mathrm{ft})$
230 VAC input voltage	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$

NOTE

Never connect phase lead capacitors or surge absorbers to the output terminals of the AC motor drive.

6-7 Digital Keypad

KPC-CC01

Display frequency, current, voltage and error etc.
B: Status Indicator
F: Frequency Command
H: Output Frequency
U: User Defined Units
ERR: CAN Error Indicator
RUN: CAN Run Indicator

C: Function

(Refer to the chart follows for detail description)

Key	Description
ESC	ESC Key Press ESC key to return to the previous page. It also functions as a return to last category key in the sub-menu.
MENU	Menu Key Press MENU key under any condition will return to the main MENU. Menu content: 1. Parameter Detail 2. Copy Parameter
ENTER	ENTER Key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.
HAND	HAND ON Key 1. HAND key will operates according to the parameter settings when the source of HAND master frequency command and the source of HAND operation command is properly set,. The factory setting of the source command for frequency and operation are from the digital keypad.
AUTO	2. Press HAND key in stop status, the drive setting switches to the parameter setting of HAND. Press HAND key in during operation, the drive will come to stop then switches to the parameter setting of HAND. 3. When process complete: H/A LED ON.
Auto Operation Key	
1. AUTO function executes according to the parameter settings of the source of AUTO frequency and AUTO	
operation. The factory setting is the external terminal (source of operation is 4-20mA).	
2. Press the ATUO key in stop status, the drivel switches to auto-setting. Press the auto key during operation	
status, the drivel will come to stop and switch to auto-setting.	

Description of LED Functions

Dimension

RJ45 Extension Lead for Digital Keypad

Part \#	Description
CBC-K3FT	3 feet RJ45 extension lead (approximately 0.9 m)
CBC-K5FT	5 feet RJ45 extension lead (approximately 1.5 m)
CBC-K7FT	7 feet RJ45 extension lead (approximately 2.1 m)
CBC-K10FT	10 feet RJ45 extension lead (approximately 3 m)
CBC-K16FT	16 feet RJ45 extension lead (approximately 4.9 m)

6-8 USB/RS-485 Communication Interface IFD6530

. Warning

\checkmark Read thoroughly this section before installation and putting it into use.
\checkmark The content of this section and the driver file may be revised without prior notice. Consult our distributors or download the most updated instruction/driver version at AC Motor Drive > Optional

Introduction

IFD6530 is a convenient RS-485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2 kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS-485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABU products to your PC.

Applicable Models: All DELTA IABU products.

- Application \& Dimension:

Specifications

Power supply	No external power is needed
Power consumption	1.5 W
Isolated voltage	$2,500 \mathrm{VDC}$
Baud rate	$75,150,300,600,1,200,2,400,4,800,9,600,19,200,38,400,57,600,115,200 \mathrm{bps}$
RS-485 connector	RJ-45
USB connector	A type (plug)
Compatibility	Full compliance with USB V2.0 specification
Max. cable length	RS-485 Communication Port: 100 m
Support RS-485 half-duplex transmission	

RJ-45

PIN	Description
1	Reserved
2	Reserved
3	GND
4	SG-

PIN	Description
5	SG+
6	GND
7	Reserved
8	$+9 V$

Preparation before Installing Driver

Extract the driver file (IFD6530_Drivers.exe) by following steps. You could find driver file (IFD6530_Drivers.exe) in the CD supplied with IFD6530.

Note: DO NOT connect IFD6530 to PC before extracting the driver file.

STEP 2

STEP 3

Installshield Wizard				X
Choose Destination Location Select folder where Setup will install files.				
Setup will install Silicon Laboratories CP210x Evaluation Kit Tools Release 3.31 in the following folder. To install to this folder, click Next. To install to a different folder, click Browse and select another folder.				
$\left[\begin{array}{l}\text { Destination Folder- } \\ \text { C:ISiLabs } \mathrm{MMCUSCP210x} \\ \text { Blowse... } \\ \hline\end{array}\right.$				
InstallShield				

STEP 4

STEP 5

You should have a folder marked SiLabs under drive C. c:\ SiLabs

Installing the Driver

After connecting IFD6530 to PC, install driver by following steps below.

LED Display

1. Steady Green LED ON: power is ON.
2. Blinking orange LED: data is transmitting.

07 Option Cards

Select applicable option cards for your drive or contact local distributor for suggestion.
To prevent drive damage during installation, remove the digital keypad and the cover before wiring. Refer to the following instruction.

Remove the top cover

Frame B, C \& D Screw Torque: Kg-cm [lb.-in.]
Step1

Vertical view of the motor drive \& Screw's Specifications:

Screws' Specification for Option Card Terminal:

PG Card	Wire Gauge	Torque
EMED-PGABD-1	$30 \sim 16 A W G\left(0.05 \sim 1.31 \mathrm{~mm}^{2}\right)$	$1.6 \mathrm{Kg}-\mathrm{cm}[1.4 \mathrm{lb}-\mathrm{in}]$
EMED-PGHSD-1	$30 \sim 16$ AWG $\left(0.05 \sim 1.31 \mathrm{~mm}^{2}\right)$	$1.6 \mathrm{Kg}-\mathrm{cm}[1.4 \mathrm{lb}-\mathrm{in}]$

7-1 EMED-PGABD-1

Applicable encoder: A/B/Z \& U/V/W Absolute Encoders

NOTE

- Verify if the SW1 is set to the correct output voltage before power on.
- Keep away from any high voltage line when wiring the motor drive to avoid interference.

Terminal Specification

	Terminals	Descriptions
TB2	Vin	Terminal for voltage input, to adjust the amplitude of output voltage at terminal A/O and terminal B/O. It also provides a 5 V voltage to support line driver's signal. Vin voltage range: 8~24V, Max: 24 V .
	A/O, B/O	Output signal of the push-pull frequency divider Factory setting: Output amplitude is about +24 V . Use SW2 to cut off the internal default power. Input required power (i.e. output voltage's amplitude) DVI voltage range Max: 24 V (Push-Pull Voltage Output) Max. output frequency: 100 kHz Support frequency dividing output, the frequency dividing range: $1 \sim 31 \mathrm{~Hz}$.
	GND	Common ground terminal connecting to the host controller and the motor drive.
	AO, /AO, BO, /BO	Line driver pulse output signal (Line Driver RS422) Max. output frequency: 150 kHz Support frequency dividing output, the frequency dividing range: $1 \sim 31 \mathrm{~Hz}$.
TB1	VP	Power output of encoder Note: Use SW1 to set up output voltage Voltage: $+5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ or $+12 \mathrm{~V} \pm 1 \mathrm{~V}$ Current: 200mA max
	OV	Common power terminal of encoder
	$\begin{aligned} & \mathrm{A}, \overline{\mathrm{~A}}, \mathrm{~B}, \\ & \overline{\mathrm{~B}}, \mathrm{Z}, \overline{\mathrm{Z}} \end{aligned}$	Incremental encoder signal input terminal Types of input signal: line drive, voltage output, push-pull, open-collector) Note: Different input signal needs different wiring method. See user manual for wiring diagrams. Max. input frequency: 150kHz
	$\frac{\mathrm{u}, \overline{\mathrm{U}}, \mathrm{v},}{\overline{\mathrm{~V}}, \mathrm{w}, \bar{W}}$	Absolute encoder signal input terminal Types of input signal: line drive, voltage, push-pull, open-collector) Note: Different input signal needs different wiring method. See user manual for wiring diagrams Max.input frequency: 150kHz
JP1	(b)	Ground Terminal Connect the power supply of the motor drive to the ground. Support PG shielding
SW1		Switch between encoder's 5V/12V power.
	SW2	Offline Detection Switch. Switch the SW2 to Line-D side to enable offline detection when Line-D input signal. Switch the SW2 to OPEN-C side to disable offline detection function when OPEN-C input signal.
	SW3	Switch of power supply for frequency division Switch SW3 to INP side to provide 24 V power for internal use. Switch SW3 to EXP side to provide 24 V power for external use (client).

Applicable encoders:
Push- pull

NOTE

- Verify if the SW1 is set to the correct output voltage before power on.
- Keep away from any high voltage line when wiring the motor drive to avoid interference

Wiring Diagram

Set up the Signal of the Frequency Division

(1) After the encoder input a PULSE signal, there will be an output signal of the division factor "n." Use Pr10-29 <Output of PG card's frequency division> to set up.
(2) Setup of $\operatorname{Pr} 10-29<P G$ card's frequency division>:

Output of decimal frequency division setting. Range of the division factor "n": 1~31.
(3) Pr10-30 <Mode of output of PG card's frequency division>

| Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: |
| \mathbf{X} | \mathbf{X} | OUT/M | IN/M |

OUT/M: Mode of pulse output of frequency division;
IN/M: Mode of pulse input of frequency division;
" X " is for backup while " 0 " is a value to write.
Setting and Description of Input Mode (IN/M) \& Output Mode (OUT/M):

OUT/M	IN/M	Division factor	
		A is ahead of B	B is ahead of A
0	0		
1	0		
X	1	A-/A \square \square $B-/ B$ \qquad $\mathrm{AO}-\overline{\mathrm{AO}}$ $\mathrm{BO}-\overline{\mathrm{BO}}$	

NOTE

- In the waveform $\mathrm{A}-/ \mathrm{A}, \mathrm{B}-/ \mathrm{B}$ are the PG card input signals; $\mathrm{AO}-\overline{\mathrm{AO}}, \mathrm{BO}-\overline{\mathrm{BO}}$ are the differential output frequency division signals. (Use a differential probe to measure.)
- Division factor "n": Set 15 to have the input signal divided by 15.)
- When OUT/M, IN/M set as 0.0 , the PG card input signal $A-/ A, B-/ B$ are square waves while $\mathrm{AO}-\overline{\mathrm{AO}}, \mathrm{BO}-\overline{\mathrm{BO}}$ are frequency division output.
- When OUT/M, IN/M are set as 1.0, the PG card input signal $A-/ A, B-/ B$ are square waves while the $B O-\overline{\mathrm{BO}}$ is the phase indicator of A and B
- When OUT/M, IN/M are set as X, B-/B phase has to be direction indication input signal (e.g. When $B-/ B$ is LOW, it means A is ahead of B. When $B-/ B$ is HIGH, it means B is ahead of A)
■ Take Pr10-29 and Pr10-30 as examples. When frequency division value $=15, \mathrm{OUT} / \mathrm{M}=1, \mathrm{IN} / \mathrm{M}=0$, set $\operatorname{Pr} 10-29=15$ and $\operatorname{Pr} 10-30=0002 \mathrm{~h}$.
Set Pr100-29 =15,
Set Pr10-30 =0002h

Bit3	Bit2	Bit1	Bit0
X	\mathbf{X}	$\mathbf{1}$	$\mathbf{0}$

7-2 EMED-PGHSD-1

Applicable encoder:
Sine-wave: Heidenhain ERN1387
EnDat2.1: Heidenhain EQN425, EQN1325, ECN113, ECN413, ECN1113, ECN1313 SICK HIPERFACE: SRS50/60

EMED-PGHSD-1(Terminal J3) pin definition correspond to each ENCODER type

Terminal\#	Heidenhain ERN1387	Heidenhain ECN1313	HIPERFACE®
1	B-	B-	REFSIN
2	-	-	-
3	R+	DATA	DATA+
4	R-	/DATA	DATA-
5	A+	A+	+COS
6	A-	A-	REFCOS
7	OV	OV	GND
8	B+	B+	+SIN
9	UP	UP	UP
10	C-	-	-
11	C+	-	-
12	D+	-	-
13	D-	-	-
14	-	/CLOCK	-
15	-	CLOCK	-

Terminal Function:

Terminals		Descriptions	Specifications
J3	UP(VP)	The output voltage used by the encoder. Use the dip switch on SW2 to change the output voltage to +5 V or +8 V	Voltage: $+5.1 \mathrm{Vdc} \pm 0.3 \mathrm{~V} ;+8.4 \mathrm{Vdc} \pm 1.5 \mathrm{~V}$ Current: 200mA max.
	OV	Encoder common power terminal	Reference level of encoder's power.
	$\begin{gathered} \mathrm{A}+, \mathrm{A}-, \mathrm{B}+, \mathrm{B}-, \\ \mathrm{R}+, \mathrm{R}- \end{gathered}$	Encoder sine wave differential signal input (Incremental signal)	Input frequency: 40k Hz max.
	$+\mathrm{SIN},+\mathrm{COS},$ REFSIN, REFCOS	Encoder sine wave differential signal input	Input frequency: 20 kHz max.
	C+, C-, D+, D-	Encoder sine wave differential signal input (Absolute signal)	
	$\begin{aligned} & \text { DATA+(DATA), } \\ & \text { DATA-(/DATA) } \end{aligned}$	RS485 communication interface	Terminal resistance is about 130Ω

| CLK+, CLK- | CLOCK differential output
 for ENDAT. | Line Driver RS422 Level output |
| :--- | :--- | :--- | :--- |

Set up the Signal of the Frequency Division

(1) After the encoder input a PULSE signal, there will be an output signal of the division factor " n." Use Pr10-29 <Output of PG card's frequency division> to set up.
(2) Pr10-29 <Mode of output of PG card's frequency division> :

Output of decimal frequency division setting. Range of the division factor " n ": 1~31.

Setting and Description of Input Mode (IN/M) \& Output Mode (OUT/M):

OUT/M	IN/M	Division factor	
		A is ahead of B	B is ahead of A
0	0		
1	0	$\begin{aligned} & \mathrm{A} / \mathrm{A} \square \square \\ & \mathrm{~B}-\mathrm{B} \square \square \\ & \mathrm{AO}-\overline{\mathrm{AO}} \square \square \\ & \mathrm{BO}-\overline{\mathrm{BO}} \square \square \end{aligned}$	$\begin{aligned} & \mathrm{A}-\mathrm{A} \square \\ & \mathrm{~B}-\mathrm{B} \square \\ & \mathrm{AO}-\overline{\mathrm{AO}} \square \mathrm{BO} \\ & \mathrm{BO}-\overline{\mathrm{BO}} \square \end{aligned}$
X	1	$\begin{aligned} & \mathrm{A} / \mathrm{A} \square \mathrm{~B}-\mathrm{B} \square \\ & \mathrm{AO}-\overline{\mathrm{AO}}+\square \\ & \mathrm{BO}-\overline{\mathrm{BO}} \end{aligned}$	

NOTE

- In the waveform $\mathrm{A}-/ \mathrm{A}, \mathrm{B}-/ \mathrm{B}$ are the PG card input signals; $\mathrm{AO}-\overline{\mathrm{AO}}, \mathrm{BO}-\overline{\mathrm{BO}}$ are the differential output frequency division signals. (Use a differential probe to measure.)
■ Division factor " n ": Set 15 to have the input signal divided by 15.)
■ When OUT/M, IN/M set as 0.0 , the PG card input signal $A-/ A, B-/ B$ are square waves while . $\mathrm{AO}-\overline{\mathrm{AO}}, \mathrm{BO}-\overline{\mathrm{BO}}$ are frequency division output.
- When OUT/M, IN/M are set as 1.0, the PG card input signal A-/A, B-/B are square waves while the $\mathrm{BO}-\overline{\mathrm{BO}}$ is the phase indicator of A and B .
■ When OUT/M, IN/M are set as X, $B-/ B$ phase has to be direction indication input signal (e.g. When B-/B is LOW, it means A is ahead of When B-/B is HIGH, it means B is ahead of A)
■ Take Pr10-29 and Pr10-30 as examples. When frequency division value $=15, \mathrm{OUT} / \mathrm{M}=1, \mathrm{IN} / \mathrm{M}=$ 0 , set $\operatorname{Pr} 10-29=15$ and $\operatorname{Pr} 10-30=0002 \mathrm{~h}$.
Set $\operatorname{Pr} 100-29=15$,
Set Pr10-30 $=0002 \mathrm{~h}$

Bit3	Bit2	Bit1	Bit0
X	X	$\mathbf{1}$	$\mathbf{0}$

7-3 EMED-PGHSD-2

Applicable encoder:
Sine-wave: Heidenhain ERN1387
EnDat2.1: Heidenhain EQN425, EQN1325, ECN113, ECN413, ECN1113, ECN1313
SICK HIPERFACE: SRS50/60

EMED-PGHSD-2(Terminal TB2) pin definition corresponds to each ENCODER type.

Terminals	Heidenhain ERN1387	Heidenhain ECN1313	HIPERFACE®
B-	B-	B-	REFSIN
	-	-	-
R+/DATA+	R+	DATA	DATA+
R-/DATA-	R-	IDATA	DATA-
A+	A+	A+	+COS
A-	A-	A-	REFCOS
OV	OV	OV	GND
B+	$\mathrm{B}+$	B+	+SIN
VP	UP	UP	UP
C-	C-	-	-
C+	C+	-	-
D+	D+	-	-
D-	D-	CLOCK	-
CLK-	-	CLOCK	-
CLK +	-	-	

Terminal Function

	Terminals	Descriptions	Specifications
TB2	UP(VP)	The output voltage used by the encoder. Use the dip switch on SW2 to change the output voltage to +5 V or +8 V	Voltage: $+5.1 \mathrm{Vdc} \pm 0.3 \mathrm{~V} ;+8.4 \mathrm{Vdc} \pm 1.5 \mathrm{~V}$ Current: 200mA max.
	OV	Encoder common power terminal	Reference level of encoder's power.
	$\begin{gathered} \mathrm{A}+, \mathrm{A}-, \mathrm{B}+, \mathrm{B}-, \\ \mathrm{R}+, \mathrm{R}- \end{gathered}$	Encoder sine wave differential signal input (Incremental signal)	Input frtequency: 40 k Hz max
	$\begin{aligned} & \text { +SIN, +COS } \\ & \text { REFSIN, REFCOS } \end{aligned}$	Encoder sine wave differential signal input (Incremental signal)	Input frequency: 20k Hz max.
	C+, C-, D+, D-	Encoder sine wave differential signal input (Absolute signal)	

	DATA+(DATA), DATA-(/DATA)	RS485 communication interface	Terminal resistance is about130』
CLOCK, /CLOCK	CLOCK differential output for ENDAT	Line Driver RS422 Level output	

NOTE

- Verify if the SW1 is set to the correct output voltage before power on.

■ Keep away from any high voltage line when wiring the motor drive to avoid interference.

Wiring Diagram

Set up the Signal of the Frequency Division

(1) After the encoder input a PULSE signal, there will be an output signal of the division factor " n." Use Pr10-29 <Output of PG card's frequency division> to set up.
(2) Setup of Pr10-29 <PG card's frequency division>: Output of decimal frequency division setting. Range of the division factor " n ": 1~31.

08 Specifications

230V Series

Frame Size	B			C			D			E	
Model VFD-__ ED23/21S	022*	037*	040	055	075	110	150	185	220	300	370
Applicable Motor Output(KW)	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22	30	37
Applicable Motor Output (HP)	3	5	5	7.5	10	15	20	25	30	40	50
Rated Output Capacity(KVA)	4.8	6.8	7.9	9.5	12.5	19	25	29	34	46	55
읃 Rated Output Current (A)	12.0	17	20.0	24.0	30.0	45.0	58.0	77.0	87.0	132.0	161.0
$\underset{\sim}{\sim}$ Maximum Output Voltage (V)	3-phase Proportional to Input Voltage										
$\stackrel{\text { J Output Frequency }}{ }$	$0.00 \sim 400 \mathrm{~Hz}$										
육 Carrier Frequency	2~15kHz									2~9kHz	
O Rated Output Maximum Carrier Frequency	8 kHz			10kHz			8kHz			6kHz	
Input Current(A) 흗 으둔 Rated Voltage/Frequency	24	34	20	23	30	47	56	73	90	132	161
	1-phase 3-phase										
	200~240V 50/60Hz										
\bigcirc ¢ Voltage Tolerance	$\pm 10 \%$ (180~264V)										
Frequency Tolerance	$\pm 5 \%$ (47~63Hz)										
Cooling Method	Fan cooled										
Weight (kg)	6	6	6	8	10	10	13	13	13	36	36

*VFD022ED21S \& VFD037ED21Sare 1-phase input models.

460V Series

Fram	me Size	B	C					D		E			
Mode	del VFD-___ED43S	040	055	075	110	150	185	220	300	370	450	550	750
Appli	licable Motor Power(KW)	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
Appli	licable Motor power(HP)	5	7.5	10	15	20	25	30	40	50	60	75	100
	Rated Output Capacity (KVA)	9.2	10.4	13.5	18.3	24	30.3	36	46.2	63.7	80	96.4	116.3
	Rated Output Current (A)	11.5	13	17	23	30	38	45	58	80	100	128	165
	Maximum Output Voltage(V)	3 -phase Proportional to Input Voltage											
	Output Frequency	$0.00 \sim 400 \mathrm{~Hz}$											
	Carrier Frequency	$2 \sim 15 \mathrm{kHz}$							2~ 9kHz			2~6kHz	
	Rated Output Maximum Carrier Frequency	8kHz	10kHz			8kHz			6 kHz				
	Rated Input Current(A)	11.5	14	17	24	30	37	47	58	80	100	128	165
	Rated voltage	3-phase 380~480V . $50 / 60 \mathrm{~Hz}$											
	Voltage Tolerance	$\pm 10 \%$ (342~528V)											
	Frequency Tolerance	$\pm 5 \%(47 \sim 63 \mathrm{~Hz})$											
Cooling Method		Fan cooled											
Weig	ght (kg)	6	8	10	10	10	10	13	14.5	36	36	50	50

[^1]
General Specifications

	Control Method	1: V/F, 2: VF+PG, 3: SVC, 4: FOC+PG, 5: TQC+PG, 6:FOC+PM
	Starting Torque	Reach up to 150% or above at 0.5 Hz Under FOC+PG or FOC+PM mode, starting torque can reach 150% at 0 Hz .
	Speed Control Range	1:100 (up to 1:1000 when using PG card)
	Speed Control Resolution	$\pm 0.5 \%$ (up to $\pm 0.02 \%$ when using PG card)
	Speed Response Ability	5 Hz (Up to 30Hz for vector control)
	Max. Output Frequency	0.00 to 400 Hz
	Output Frequency Accuracy	Digital Command 0.005\%, Analog Command 0.5\%
	Frequency Setting Resolution	Digital Command 0.01 Hz , Analog Command: 1/4096(12 bit) of the max. output frequency.
	Torque limit	Max. is 200\% torque current
	Torque Accuracy	$\pm 5 \%$
	Accel. / Decel. Time	0.00~600.00 seconds
	V/F Curve	Adjustable V/f curve using 4 independent points and square curve.
	Frequency Setting Signal	$\pm 10 \mathrm{~V}$
	Brake Torque	About 20\%
	Motor Protection	Electronic thermal relay protection.
	Over-current Protection	The current forces 190\% of the over-current protection and 250% of the rated current.
	Ground Leakage Current Protection	Higher than 50\% rated current
	Overload Ability	Constant torque: 150% for 60 seconds, variable torque: 190% for 5 seconds
	Over-voltage Protection	Over-voltage level: Vdc > 400/800V; low-voltage level: Vdc < 200/400V
	Over-voltage Protection for the Input Power	Varistor (MOV)
	Over-temperature Protection	Built-in temperature sensor
Cert	tifications	(UL mark excludes VFD022ED21S and VFD037ED21S) EN81-1+A3, EN81-20

Environment for Operation, Storage and Transportation

DO NOT expose the AC motor drive in a bad environment, such as dust, direct sunlight, corrosive/inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ every year.

Environment	Installation location	IEC60364-1/IEC60664-1 Pollution degree 2, Indoor use only			
	Surrounding Temperature	Operation	Between $10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$ with Derating the operation temperature can reach $50^{\circ} \mathrm{C}$		
			Between $40^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ with Derating	2.2-4kW: for every $1^{\circ} \mathrm{C}$ raise in temperature, decrease 2.2% of rated current	
				$5.5-30 \mathrm{~kW}$: for every $1^{\circ} \mathrm{C}$ raise in temperature, decrease 2.5% of rated current	
				$37-75 \mathrm{~kW}$: for every $1^{\circ} \mathrm{C}$ raise in temperature, decrease 2.0% of rated current	
		Storage and Transportation	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$		
		Non-condensation, non-frozen			
	Rated Humidity	Operation	Max. 90\%		
		Storage/ Transportation	Max. 90\%		
		No condense water			
	Altitude	Operation	If AC motor drive is installed at altitude $0 \sim 1000 \mathrm{~m}$, follow normal operation restriction. If it is install at altitude $1000 \sim 3000 \mathrm{~m}$, decrease 1% of rated current or lower $0.5^{\circ} \mathrm{C}$ of temperature for every 100 m increase in altitude. Maximum altitude for Corner Grounded is 3000 m . If an installation at an altitude higher than 3000 m is required, contact Delta for more information.		
	Power System	TN system ${ }^{* * * 2}$			
Package Drop	Storage	ISTA procedure 1A (according to weight) IEC60068-2-31			
	Transportation				
Vibration	1.0mm, peak to peak value range from 2 Hz to 13.2 Hz ; $0.7 \mathrm{G} \sim 1.0 \mathrm{G}$ range from 13.2 Hz to 55 Hz ; 1.0G range from 55 Hz to 512 Hz . Comply with IEC 60068-2-27				
Impact	IEC/EN 60068-2-27				
Protection Level	NEMA 1/IP20				

*1: TN system: The neutral point of the power system connects to the ground directly. The exposed metal components connect to the ground via the protective earth conductor.
*2: Single phase models use single phase three wire power system.

09 Digital Keypad

9-1 Description of Digital Keypad

Digital Operation Panel KPED-LE01

Function of Buttons

Buttons	Description
	Horizontal movement button: To move the cursor position for value adjustment.
RESET	Reset the the motor drive after fault occurred.
MODE	Change between different diplay mode.
ENTER	Parameter setting button: To read or modify various parameter settings.
	1. Two buttons available: Up and Down button 2. 3. Press Up or Down button to increase or decrease the value of a number.

LED Display

LED	Description
$\begin{array}{ll} \text { UP } & \text { DN } \\ \text { D1 } & \text { D2 } \\ \text { D3 } & \text { D4 } \end{array}$	Status Display: UP: Moving up. DN: Moving down D1: MI1 status D2:MI2 status D3:MI3 status D4:M14 status
	Main Display Area: To display frequency, current, voltage, rotaion direction, user defined units, errors and warnings

Description of the Displayed Functions

Displayed Function	Description
	Display the frequency setting of the VFD-ED
	Display the actual frequency delivered from VFD-ED to the motor.
	Display the user defind value at Pr00-04.
	Display the current (ampere)
	Display the selected parameter
	Display the value set at a parameter
$\begin{array}{lll} \hline \mathrm{up} \\ \mathrm{D} 1 \\ \mathrm{D} 3 \end{array}$	Display the external fault
$\begin{aligned} & \text { up } \\ & \text { op } \\ & \text { o3 } \end{aligned}$	Display "End" for approximately 1 second if input has been accepted by pressing ENTER key. After a parameter value has been set, the new value is automatically stored in the register. To modify an entry, use the \square and \square keys.
	If the command given by the user is not accepted or the value of the command exceeds the allowed range, this error message will be displayed.

9-2 Operating the Built-in Digital Keypad

Setting parameters

NOTE : In the parameter setting mode, you can press ENTER to the selected mode.

To change data

- है

Setting direction (When operation source is digital keypad)

9-3 Description of the Digital Keypad KPC-CC01

Communication Interface
RJ-45 (socket), -485 interface;
Installation Method

1. Embedded type and can be put flat on the surface of the control box. The front cover is water proof.
2. Buy a MKC-KPPK model to do wall mounting or embedded mounting. Its protection level is IP66.
3. The maximum RJ45 extension lead is 5 m (16ft)
4. This keypad can also be used on Delta's motor drive C2000, CH2000 and CP2000.

Function of Buttons

| Button | Start Operation Key
 1.
 2.
 It is only valid when the source of operation command is from the keypad.
 It can operate the AC motor drive by the function setting and the RUN LED will be ON.
 It can be pressed repeatedly while the motor drive is shutting down.. |
| :--- | :--- | :--- |

Description of LED Functions

LED	Description
RUN	Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed, standby, restart after fault and speed search. Blinking: drive is decelerating to stop or in the status of base block. Steady OFF: drive doesn't execute the operation command
	Steady ON: stop indicator of the AC motor drive. Blinking: drive is in the standby status. Steady OFF: drive doesn't execute "STOP" command
	Operation Direction LED 1. Green light is on, the drive is running forward. 2. Red light is on, the drive is running backward. 3. Twinkling light: the drive is changing direction.

9-4 Function of Digital Keypad KPC-CC01 POWER ON

Start-up
Skip to main page afer 3 sec .
1)The default Start-up page is Delta Logo.(Default 1 and 2)
2) User can customize their start-up page through the edited function. (Need to purchase the optional accessories)

\forall F $\quad 60.00 \mathrm{~Hz}$ Auto \longrightarrow The top line of LCD displays the status of drive. the format user defined. The page shown on the left is display as Delta default setting.
\longrightarrow The button line of LCD displays time and JOG.

MENU
1.Parameter Setup
5. Copy PLC
2.Copy Parameter
3.Keypad Locked
6. Fault Record
7. Quick Start
4.PLC Function

Item 1~4 are the common items for KPC-CC01 \&KPC-CE01
8. Display Setup
9. Time Setup
10. Language Setup
11. Start-up
12. Main page
13. PC Link

NOTE

Startup page can only display pictures, no flash.
2. When Power ON, it will display startup page then the main page. The main page displays Delta's default setting F/H/A/U, the display order can be set by Pr. 00.03 (Startup display). When the selected item is U page, use left key and right key to switch between the items, the display order of U page is set by Pr.00.04 (User display).
3. VFD-ED doesn't support Function 3, 4 and 5.

Display Icon

Display Item

Item 1~4 are the common items for KPC-CC01 \&KPC-CE01

MENU
1.Parameter Setup
2.Copy Parameter
3.Keypad Locked
4.PLC Function
5. Copy PLC
6. Fault Record
7. Quick Start
8. Display Setup
9. Time Setup
10. Language Setup
11. Start-up
12. Main page
13. PC Link

1. Parameter Setup

Pr setup	For example: Setup source of master frequency command.	
	00-SYSTEM PARAME	Once in the Group 00 Motor Drive Parameter,
00:SYSTEM PARAM	- 00: Identity Co	
01:BASIC PARAME 02:DIGITALIN/	02: Parameter Re	Auto Frequency Command.
	$\frac{00-\text { SYSTEM PARAME }}{\frac{\Delta}{\Delta} \text { 20: Source of } F}$	When this parameter is selected, press
Press ENTER to select.	21: Source of OP 22: Stop Methods	ENTER key to go to this parameter's setting menu.
\wedge	00-20	
Press to select a parameter group.	$\stackrel{2}{2}$	For example: Choose " 2 Analogue Input, then press the ENTER key.
Once a parameter group is selected,	00-20	
	Analog Input	displayed which means that the parameter setting is done.

2. Copy Parameter

	4 duplicates are provided The steps are shown in the example below.		
Copy Pr			
- 001:Manual_001002:FileName01003:FileName02			
	Copypr	1 Go to Copy Parameter	
	- 001:Manual_001 002:	2 Select the parameter group which needs to	
Press ENTER key to go to 001~004: content storage	003:	be copied and press ENTER key.	
	001>		
	$\begin{aligned} & \text { 1: keypad->VFD } \\ & \text { 2: VFD } \rightarrow \text { Keypad } \end{aligned}$	2. Press ENTER key to go to "Save in the motor drive" screen.	
	001> P08-09		
	keypad->VFD		
	68%	Begin to copy parameters until it is done.	
	Copypr		
	$\begin{aligned} & \text { - 001:Manual_001 } \\ & \text { 002: } \end{aligned}$	Once copying parameters is done, keypad will automatically be back to this screen.	
	Example: Saved in the keypad.		
	Copypr	1. Once copying parameters is done, keypad will automatically be back to this screen. 2. Select the parameter group which needs to be copied and press ENTER key.	
	- 001:		
	$\begin{aligned} & \text { 002: } \\ & \text { 003: } \end{aligned}$		
	$001>$		
	1: keypad->VFD - 2: VFD->Keypad	Press ENTER key to go to "Save in the motor drive" screen.	
	$001>$	Use Up/Down key to select a symbol.	
	FileName00	Use Left/Right key to move the cursor to select a file name.	
	String \& Symbol Table: !"\#\$\%\& () *+, $-\quad / 0123456789: ;<=$$>$? @ABCDEFGHI J KLMNOPQRSTUVWXYZ		
	$\begin{aligned} & 〔 \backslash] \widehat{\text { yz }}\{\hat{\}} \sim \end{aligned}$		
	001>	Once the file name is confirmed, press ENTER key.	
	Manual_001		
	001> P01-50		
	VFD->Keypad	To begin copying parameters until it is done.	
	12\%		
	Copypr	When copying parameters is completed, keypad will automatically be back to this screen.	
	001:Manual_001* 002:		
	003:		
	Copy pr 001:12/21/2014 002: 003:		
		Press Right key to see the date of copying parameters.	

3. Lock the Keypad

Keypad Lock
Press ENTER to Lock Key

Keypad Locked
This function is used to lock the keypad. The main page would not display "keypad locked" when the keypad is locked, however it will display the message"please press ESC and then ENTER to unlock the keypad" when any key is pressed.

When the keypad is locked, the main screen doesn't display any status to show that.

Press any key on the keypad; a screen as shown in image on the left will be displayed.

If ESC key is not pressed, the keypad will automatically be back to this screen.

The keypad is still locked at this moment. By pressing any key, a screen as shown in the image on the left will still be displayed.

Press ESC for 3 seconds to unlock the keypad and the keypad will be back to this screen. Then each key on the keypad is functional.

Turn off the power and turn on the power again will not lock keypad.
4. Fault Record

KPC-CE01 does not support this function.

Able to store 6 error code (Keypad V1.02 and previous versions)
Able to store 20 error code(Keypad V1.0e3 and previous version)
The most recent error record is shown as the first record. Select an error record to see its detail such as date, tme, frequency, current, voltage, DCBUs voltage)

Fault record	
-1:oL	
$\begin{aligned} & \text { 2:ovd } \\ & 3: G F E \end{aligned}$	
1: oL	
Current: 79.57 Voltage: 189.2 BUS Voltage: 409.5	
1: oL	
- Date: 01/20/2014	
Time: 2	21:02:24
Outfreq:	32.61
Fault record	
$\begin{array}{rl} 1: o \mathrm{LL} \\ \mathrm{t} & 2: \mathrm{ovd} \\ 3: \mathrm{GFF} \end{array}$	
2: ovd	
- Current: 79.57	
Voltage: 189.2	

Press Up/Down key to select an error record.
After selecting an error code, press ENTER to see that error record's detail

Press Up/Down key to see an error record's detail such as date, time, frequency, current, voltage, DCBus voltage.

Press Up/Down key to select an error record.
After selecting an error code, press ENTER to see that error record's detail

Press Up/Down key to see an error record's detail such as date, time, frequency, current, voltage, DCBus voltage.

5. Display Setup

6．Time Setting

Time setup	Time Setup	
$2009 ’ / 01 / 01$	$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Use Up／Down key to set up Year
	Time Setup	Use Up／Down key to set up Month
Use Left／Right key to select Year，Month，Day，Hour，Minute or Second to set up	$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	
	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Use Up／Down key to set up day
	Time Setup	
	$\begin{aligned} & \text { 2014/01/01 } \\ & 21: 00: 00 \end{aligned}$	Use Up／Down key to set up hour
	Time Setup	
	$\begin{aligned} & \text { 2014/01/01 } \\ & 21: 12: 00 \end{aligned}$	Use Up／Down key to set up Minute
	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 21: 12: 14 \end{aligned}$	Use Up／Down key to set up Second
	Time Setup	After setting up，press ENTER to confirm the setup．
	END	
	D，NOTE	
	When the digital keypad is removed，the time setting will be in standby status for 7 days．After this period the time needs to be reset	

7．Language setup

Language 1：English	Language setting option is displayed in the language of the user＇s choice． Language setting options：	
2：繁體中文	1．English	
3：简体中文	2．繁體中文	5．
Use Up／Down key to select	3．简体中文	6．Espanol
language，than press ENTER．	4．Turkce	7．Portugues

8. Startup

Start-up	1. Default 1 DELTA LOGO
1.Default 1 2.Default 2 3.User Define	
	2. Default 2 DELTA Text Industrial Auto mation
	3. User Defined: optional accessory is require (TPEditor \& USB/RS-485 Communication Interface-IFD6530) Install an editing accessory would allow users to design their own start-up page.If editor accessory is not installed, "user defined" option will dispay a blank page. DELTA VFD C2000 $X-Y-Z$-axis station X-axis
	USB/RS-485 Communication Interface-IFD6530 Please refer to Chapter 07 Optional Acessories for more detail. TPEditor Go to Delta's website to download TPEditor V1.30.6 or later versions. http://www.delta.com.tw/ch/product/em/download/download main.asp?act $=3 \& \text { pid=1\&cid=1\&tpid=3 }$

9. Mian Pge

Default picture and editable picture are available upon selection.

Press ENTER to select.

1. Default page

F 600.00Hz >>> H >>> A >>> U (circulate)
2. User Defined: optional accessory is require (TPEditor \& USB/RS-485 Communication Interface-IFD6530)
Install an editing accessory would allow users to design their own start-up page.If editor accessory is not installed, "user defined" option will dispay a blank page.

$$
\begin{aligned}
& \text { Freq. } 60.00 \mathrm{~Hz} \\
& \text { Current } 123.45 \mathrm{~A} \\
& \text { DC BUS } 543.21 \mathrm{Vdc} \\
& \text { PID target } 50.00 \% \\
& \text { PID feedback } 47.45 \% \\
& \text { Output freq. } 53.21 \mathrm{~Hz}
\end{aligned}
$$

USB/RS-485 Communication Interface-IFD6530 Please refer to Chapter 07 Optional Acessories for more detail.

TPEditor

Go to Delta's website to download TPEditor V1.30.6 or later versions.
http://www.delta.com.tw/ch/product/em/download/download main.asp?act =3\&pid=1\&cid=1\&tpid=3
10. PC Link

Choose <YES> in the <Confirm to Write> dialogue box.

Start downloading pages to edit KPC-CC01.
2. VFDSoft: this function allows user to link to the VFDSoft Operating software then to upload data

Copy parameter 1~4 in KPC-CC01
Connect KPC-CCO1 to a computer

PC Link	
1TPEditor 2. VFDSoft	Start downloading pages to edit to KPC-CC01
PC Link	Use Up/Down key to select a parameter group to upload to VFDSoft. Press ENTER
001: C2000_Fan1 002: C2000_Fan2 003: C2000_Pum1	
PC Link 1: 0	Waiting to connect to PC
Waiting	
0\%	

	Uploading parameter is completed 100\% Before using the user defined starting screen and user defined main screen, the starting screen setup and the main screen setup have to be preset as user defined. If the user defined page are not downloaded to KPC-CC01, the starting screen and the main screen will be blank.

Other Display

When fault occur, the menu will display:

1. Press ENTER and start RESET. If still no response, please contact local distributor or return to the factory. To view the fault DC BUS voltage, output current and output voltage, press "MENU" \rightarrow "Fault Record".
2. Press ENTER again, if the screen returns to main page, the fault is clear.
3. When fault or warning message appears, backlight LED will blinks until the fault or the warning is cleared.

Optional accessory: RJ45 Extension Lead for Digital Keypad

Part No.	Description
CBC-K3FT	RJ45 extension lead, 3 feet (approximately 0.9 m)
CBC-K5FT	RJ45 extension lead, 5 feet (approximately 1.5 m)
CBC-K7FT	RJ45 extension lead, 7 feet (approximately 2.1 m)
CBC-K10FT	RJ45 extension lead, 10 feet (approximately 3 m)
CBC-K16FT	RJ45 extension lead, 16 feet (approximately 4.9 m)

Note: When you need to buy communication cables, buy non-shielded, 24 AWG, 4 twisted pair, 100 ohms communication cables.

9-5 Digital Keypad KPC-CC01 Fault Codes and Descriptions

LCM Display *	Description	Corrective Actions
Fault FrEr kend kplash Read Er	Keypad flash memory read error	An error has occurred on keypad's flash memory. 1. Press RESET on the keypad to clear errors. 2. Verify what kind of error has occurred on keypad's flash memory. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your authorized local dealer.
Fault ${ }^{\text {FSEr }}{ }^{\text {HaNo }}$ kpdFlash Save Er	Keypad flash memory save error	An error has occurred on keypad's flash memory. 1. Press RESET on the keypad to clear errors. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your authorized local dealer.
	Keypad flash memory parameter error	Errors occurred on parameters of factory setting. It might be caused by firmware update. 1. Press RESET on the keypad to clear errors. 2. Verify if there's any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
$\begin{aligned} & \text { Fault }{ }^{\text {VFDr }} \\ & \text { Read VFD Info Er } \\ & \text { Ren } \end{aligned}$	Keypad flash memory when read AC drive data error	Keypad can't read any data sent from VFD. 1. Verify if the keypad is properly connect to the motor drive by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
\square Fault CPUEr CPU Error	and then power on again the system.	A Serious error has occurred on keypad's CPU. 1. Verify if there's any problems on CPU clock? 2. Verify if there's any problem on Flash IC? 3. Verify if there's any problem on RTC IC? 4. Verify if the communication quality of the RS485 is good? 5. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

Warning Codes:

LCM Display *	Description	Corrective Actions
Warning CE01 Comm Command Er	Modbus function code error	Motor drive doesn't accept the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
Warning CE02 Comm Address Er	Modbus data address error	Motor rive doesn't accept keypad's communication address. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
$\begin{aligned} & \text { Warning } \\ & \quad \text { CE03 } \\ & \text { Comm Data Error } \end{aligned}$	Modbus data value error	Motor drive doesn't accept the communication data sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
Warning CE04 Comm Slave Error	Modbus slave drive error	Motor drive cannot process the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Warning CE10 Kpavo Kpomm Time Out	Modbus transmission time-Out	Motor drive doesn't respond to the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
	Object not supported by TP Editor	Keypad's TP Editor uses unsupported object. 1. Verify how the TP editor should use that object. Delete unsupported object and unsupported setting. 2. Reedit the TP editor and then download it. If none of the solution above works, contact your local authorized dealer.

File Copy Setting Fault Description

LCM Display *	Description	Corrective Actions
File 1 Err 1 Read Only	Parameter and rile are read only	The property of the parameter/file is read-only and cannot be written to. 1. Verify the specification on the user manual. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Write Fail	Fail to write parameter and file	An error occurred while write to a parameter/file. 1. Verify if there's any problem on the Flash IC. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above work, contact your local authorized dealer.
File 1 Err VFD Running	AC drive is in operating status	A setting cannot be made while motor drive is in operation. 1. Verify if the drive is not in operation. If the solution above doesn't work, contact your local authorized dealer.
\square File 1 Err Pr Lock	AC drive parameter is locked	A setting cannot be made because a parameter is locked. 1. Verify if the parameter is locked or not. If it is locked, unlock it and try to set up the parameter again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Pr Changing	AC drive parameter changing	A setting cannot be made because a parameter is being modified. 1. Verify if the parameter is being modified. If it is not being modified, try to set up that parameter again. If the solution above doesn't work, contact your local authorized dealer.
	Fault code	A setting cannot be made because an error has occurred on the motor drive. 1. Verify if there's any error occurred on the motor dive. If there isn't any error, try to make the setting again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Warning Code	Warning code	A setting cannot be made because of a warning message given to the motor drive. 1. Verify if there's any warning message given to the motor drive. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Type Dismatch	File type dismatch	Data need to be copied are not same type, so the setting cannot be made. 1. Verify if the products' serial numbers need to be copied fall in the category. If they are in the same category, try to make the setting again. If the solution above doesn't work, contact your authorized dealer.
HAND File 1 Err Password Lock	File is locked with password	A setting cannot be made, because some data are locked. 1. Verify if the data are unlocked or able to be unlocked. If the data are unlocked, try to make the setting again. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

LCM Display *	Description	Corrective Actions
File 1 Err 10 Password Fail	File version dismatch	A setting cannot be made because the password is incorrect. 1. Verify if the password is correct. If the password is correct, try to make the setting again. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
File 1 Err Version Fail	AC drive copy function time-out	A setting cannot be made, because the version of the data is incorrect. 1. Verify if the version of the data matches the motor drive. If it matches, try to make the setting again. If none of the solution above works, contact your local authorized dealer.
File 1 Err VFD Time Out	Other keypad error	A setting cannot be made, because data copying timeout expired. 1. Redo data copying. 2. Verify if copying data is authorized. If it is authorized, try again to copy data. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
\square File 1 Err Keypad Issue	Other AC drive error	This setting cannot be made, due to other keypad issues. (Reserved functions) If such error occurred, contact your local authorized dealer.
File 1 Err VFD Issue	File is locked with password	This setting cannot be made, due to other motor drive issues. (Reserved functions). If such error occurred, conatct your local authorized dealer.

※ The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

9-6 TPEditor Installation

TPEditor can edit up to 256 HMI (Human-Machine Interface) pages with a total storage capacity of 256kb.
Each page can edit 50 normal objects and 10 communication objects.

1) TPEditor: Setup \& Basic Functions
1. Run TPEditor version 1.60 or later.

TPEditor 1.60
2. Go to File $(F) \rightarrow$ Click on New. The Window below will pop up. At the device type, click on the drop down menu and choose DELTA VFD-C Inverter. At the TP type, click on the drop down menu and choose VFD-C KeyPad. As for File Name, enter TPE0. Now click on OK.

3. You are now at the designing page. Go to Edit $(E) \rightarrow$ Click on Add a New Page (A) or go to the TP page on the upper right side, right click once on TP page and choose Add to increase one more page for editing. The current firmware of Keypad is version1.00 and can support up to 4 pages.

4. Edit Startup Page
5. Static Text
A. Open a blank page, click once on this button A and then double click on that blank page. The following windows will pop up.

6. Static Bitmap \rightarrow Open a blank page, then click once on this button and then double click on that blank page. The following window will pop up.

Please note that Static Bitmap setting support only images in BMP format. Now choose a image that you need and click open, then that image will appear in the Static Bitmap window.
7. Geometric Bitmap \square \rightarrow As shown in the picture on the left side, there are 11 kinds of geometric bitmap to choose. Open a new blank page then click once on a geometric bitmap icon that you need. Then drag that icon and enlarge it to the size that you need on that blank page.
8. Finish editing the keypad starting screen and select Communication>Input User Defined Keypad Starting Screen.

9. Downloading setting: Go to Tool > Communication. Set up communication port and speed of IFD6530.
10. Only three speed selections are available: 9600 bps, 19200 bps and 38400 bps.

11. When a dialogue box displayed on the screen asking to confirm writing or not, press buttons on the keypad to go to MENU, select PC LINK and then press ENTER and wait for few seconds. Then select YES on the screen to start downloading.

2) Edit Main Page \& Example of Download

1. Go to editing page, select EditàAdd one page or press the button ADD on the right hand side of the HMI page to increase number of pages to edit. This keypad currently support up to 256 pages.

2. On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW >HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.

3. Numric/ASCII Display : To add a Numeric/ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting , Fonts and Alignment.

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to $\$ 2202$. For other values, please refer to ACMD ModBus Comm Address List.

4. Scale Setting $\overline{\overline{4 \cdot \frac{1}{2}}}$: On the Tool Bar, click on this $\frac{\overline{4-\frac{1}{2}}}{}$ for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

Scale Setting			
Scale Position	Top	\square	Font Setting
Scale Side	Normal Direction	\pm	548 -
Value Length	16 Bits	Main Scale	5
Max Value	100	Sub Scale	2
Min Value	0	OK	Cancel

a. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
b. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
c. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
d. Value Length: Click on the drop down to choose 16bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
e. Main Scale \& Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
f. Maximum value \& Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to be hexadecimal, the maximum and the minimum value cannot be input as -4000 .
Follow the Scale setting mentioned above; you will have a scale as shown below.

5. Bar Graph setting

a. Related Device: Choose the VFD Communication Port that you need.
b. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
c. Maximum Value \& Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.
6. Button : Currently this function only allows the Keypad to switch pages, other functions are not yet available. Text input function and Image inserted functions are not yet supported.
Double click on 8 to open set up window.

<Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.
A [Page Jump] function setting

- Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
- <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool \rightarrow Function Key Settings $(F) \rightarrow$ Re-Define Up/Down Key(R).

- Button Text: This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.
B [Constant setting] function
This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

Button Seting						
Buma Tyre	Constan String		Constunt Seming		Fanese Stuht	Sincle Frame \quad -
					Font Sertas Tat Alicuman	$\begin{aligned} & 388 \quad-7 \\ & \text { Bimaip Alimurent } \end{aligned}$
Wivein	\|21iA	-				
Γ Mand		」			Madic $\quad \rightarrow$	Madk \quad -
- Funcoion Key	F3	\checkmark			Madic \rightarrow	Madll \rightarrow
Vabelesuth	168is	\checkmark	r call		Graph hiput	
Value Tyse	Owutum	\cdots	E EidaeWros C Ahtwong	\& Ree$c \sec$	(avae)	
Conen Sue	10	\checkmark				
TeelSum	$\sqrt{1}$	\#	Uber Lex	10		Bitmop Clar
Baman Tex					OK	Canal

7. Clock Display Setting : The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad.
Open a new file and click once in that window, you will see the following
In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to \#9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.

8. Multi-state bitmap : The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1 . Set the initial status to be 0 or 1 to define the displayed image or wording.

9. Unit Measurement $\mathbb{A}_{\text {: }}$: Click once on this Button:

Open a new file and double click on that window, you will see the following

Units Setting	
Metrology Type	
Tlme	
Unit Name	ms
OK	

Choose from the drop down list the Metrology and the Unity Name that you need.
As for Metrology, you have the following choices Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.
10. Numeric Input Setting $\stackrel{\text { an }}{ }$:

This menu allows you to provide parameters or communication ports and to input numbers.
Click once on this button \qquad
Open a new file and double click on that window, you will see the following:

a. Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter P01-44.
b. OutLine Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
c. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
d. Value Type \& Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for C2000 have to be 16bits. The 32bits values are not supported.
e. Value Setting: This part is set automatically by the keypad itself.
f. Limit Setting: Input the range the security setting here.
g. For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value ias 4, then press F1 on Keypad Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table $01-44$ to verify if your input correctly the value.
11. Download TP Page : Press Up or Down key on the keypad until you reach \#13 PC Link.

Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication $(M) \rightarrow$ Write to $\operatorname{TP}(W)$ to start downloading the page to the keypad

When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.

$\frac{\text { PC Link 1: }}{\text { Waiting }}$
0%

PC Link 1: 2170
Receiving
58%

3) Edit Main Page

1. On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW >HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.

2. Numric/ASCII Display : To add a Numeric/ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting, Fonts and Alignment.

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to $\$ 2202$. For other values, please refer to ACMD ModBus Comm Address List.

3. Scale Setting $\frac{\overline{7 \cdot \frac{1}{2}}}{2}$: On the Tool Bar, click on this $\frac{\overline{4 \cdot \frac{1}{2}}}{2}$ for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

Scale Setting					
Scale Position Scale Side	Top \quad -			Font Setting	
	Normal D		\checkmark		
Value Length	16 Bit	\square	Main Scale		
Max Value	100		SubScale		
Min Value	0		OK		Canoel

i. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
ii. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
iii. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
iv. Value Length: Click on the drop down to choose 16bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
v. Main Scale \& Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
vi. Maximum value \& Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to be hexadecimal, the maximum and the minimum value cannot be input as -4000 .
Follow the Scale setting mentioned above; you will have a scale as shown below.

4. Bar Graph setting :

i. Related Device: Choose the VFD Communication Port that you need.
ii. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
iii. Maximum Value \& Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.
5. Button B : Currently this function only allows the Keypad to switch pages, other functions are not yet available. Text input function and Image inserted functions are not yet supported.

Double click on 8 to open set up window.

<Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.
A [Page Jump] function setting

- Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
- <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool \rightarrow Function Key Settings (F) \rightarrow Re-Define Up/Down Key(R).

- Button Text: This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.
B [Constant setting] function
This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

11. Clock Display Setting : The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad.

Open a new file and click once in that window, you will see the following
In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to \#9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.

12. Multi-state bitmap : The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1 . Set the initial status to be 0 or 1 to define the displayed image or wording.

13. Unit Measurement \mathbb{N} : Click once on this Button:

Open a new file and double click on that window, you will see the following

Choose from the drop down list the Metrology and the Unity Name that you need.
As for Metrology, you have the following choices Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.
14. Numeric Input Setting $\stackrel{\text { 上3 }}{=}$:

This menu allows you to provide parameters or communication ports and to input numbers.
Click once on this button
Open a new file and double click on that window, you will see the following:

h. Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter P01-44.
i. OutLine Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
j. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
k. Value Type \& Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for C 2000 have to be 16bits. The 32bits values are not supported.
I. Value Setting: This part is set automatically by the keypad itself.
m . Limit Setting: Input the range the security setting here.
n. For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value ias 4, then press F1 on Keypad Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input correctly the value.
15. Download TP Page : Press Up or Down key on the keypad until you reach \#13 PC Link.

Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication $(M) \rightarrow$ Write to $\operatorname{TP}(W)$ to start downloading the page to the keypad
When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.

10 Auto-tuning Process

Flow Chart

- Explanations for the Auto-tuning Steps

Step1

Basic Parameters Settings

- Make sure that Pr.00-00 (identity code of the AC motor drive) corresponds with the nameplate indicated on the AC motor drive.

■ Make sure that all parameters are reset to factory setting (Pr.00-02 is set to 9 or 10).

Pr00-02	0: No function
Parameter	1: Read only
Reset	8: Keypad lock
	9: All parameters are reset to factory settings (base frequency $=50 \mathrm{~Hz}$)
	10: All parameters are reset to factory settings (base frequency $=60 \mathrm{~Hz}$)

■ Source of the Master Frequency Command: It is user-defined. (Pr.00-14)

Pr00-14	1: RS-485 serial communication or digital keypad (KPC-CC01)
Source of	2: External analog input (Pr. 03-00)
the Master	3: Digital terminals input (Pr04-00~Pr.04-15)
Frequency	
Command	

■ Source of the Operation Command: It is user-defined. (Pr.00-15)
Pr00-15
Source of the operation 2: RS-485 serial communication or digital keypad (KPC-CC01) frequency

■ MI/MO External Terminal Settings:
Refer to Pr.02-01~Pr02-08 for setting of the external input terminals MI1~MI8.
NOTE: The factory setting of Pr.02-08 is 40 (Enable drive function).
Disable this function, if you don't need to use it.

Settings of	0: No function
Pr02-01 to	1: multi-step speed command 1
Prp02-08	2: multi-step speed command 2
	3: multi-step speed command 3
4: multi-step speed command 4	
5: Reset	
6: JOG command	
7: Acceleration/ Deceleration Speed inhibit	
8: the 1st, 2nd acceleration/deceleration time selection	
9: the 3rd, 4th acceleration/deceleration time selection	
10: EF input (07-28)	
11: Reserved	
12: Stop Output	
13: Reserved	
14: Reserved	
15: Operation speed command form AUI1	
16: Reserved	
17: operation speed command form AUI2	
18: Emergency stop (Pr07-28)	
19~23: Reserved	
24: FWD JOG command	

```
25: REV JOG command
26: Reserved
27: ASR1/ASR2 selection
28: Emergency stop (EF1) (Motor coasts to stop)
29-30: Reserved
31: High torque bias (by Pr.07-21)
32: Middle torque bias (by Pr.07-22)
33: Low torque bias (by Pr.07-23)
34-37: Reserved
38: Disable write EEPROM function
39: Torque command direction
40: Enable drive function
41: Detection for magnetic contactor
42: Mechanical brake
43: EPS function
```

Refer to Pr02-15 and Pr02-16 for the settings of MO1~MO8

```
Pr02-15~ 0: No function
Pr02-16 1: Operation indication
    2: Operation speed attained
    3: Desired frequency attained }1\mathrm{ (Pr.02-25)
    4: Desired frequency attained 2 (Pr.02-27)
    5: Zero speed (frequency command)
    6: Zero speed with stop (frequency command)
    7: Over torque (OT1) (Pr.06-05~06-07)
    8: Over torque (OT2) (Pr.06-08~06-10)
    9: Drive ready
    10: User-defined Low-voltage Detection (LV)
    11: Malfunction indication
    12: Mechanical brake release (Pr.02-29, Pr.02-30)
    13: Overheat (Pr.06-14)
    14: Brake chopper signal
    15: Motor-controlled magnetic contactor output
    16: Slip error (oSL)
    17: Malfunction indication
    18: Reserved
    19: Brake chopper output error
    20: Warning output
    21: Over voltage warning
    22: Over-current stall prevention warning
    23: Over-voltage stall prevention warning
    24: Operation mode indication (Pr.00-15 =0)
    25: Forward command
    26: Reverse command
    27: Output when current >= Pr.02-33
    28: Output when current < Pr.02-33
    29: Output when frequency >= Pr.02-34
    30: Output when frequency < Pr.02-34
    31-32: Reserved
    33: Zero speed (actual output frequency)
    34: Zero speed with Stop (actual output frequency)
    35: Error output selection }1\mathrm{ (Pr.06-22)
    36: Error output selection 2 (Pr.06-23)
    37: Error output selection 3 (Pr.06-24)
    38: Error output selection 4 (Pr.06-25)
    39: Reserved
    40: Speed attained (including zero speed)
    41: Reserved
    42: STO output error
```


Step2

Encoder Settings

- Selection of speed feedback cards

■ Refer to CH 07 Speed Feedback Card Selection. Delta provides 3 kinds of PG card for user to choose, including EMED-PGABD-1, EMED-PGHSD-1, EMED-PGAB-0.

Pr10-00	0: No function
Type of PG	1: ABZ
signal	2: ABZ+Hall
	3: SIN/COS + Sinusoidal
	4: SIN/COS + Endat
	5: SIN/COS
	6: SIN/COS + Hiperface

■ Encoder settings: Pr.10-01~Pr.10-02
Detection for the magnetic pole position of motor
The detection method will be different by the setting of Pr.10-00 PG Signal Type.
The detection methods: (refer to Pr.10-00)

- Setting 1 or 5: The AC motor drive will output short circuit to detect the position of the magnetic pole. At this moment, the motor will generate a little noise.
- Setting 2: The AC motor drive will detect the position of the magnetic pole by the UVW signal of PG.
- Setting 3: The AC motor drive will detect the position of the magnetic pole by the sine signal of PG.
- Setting 4: The AC motor drive will detect the position of the magnetic pole by the communication signal of PG.

Pr10-01 1~25000
Encoder
Pulse

Type of Encoder Input Setting. The setting of this parameter is normally 1 . If the motor doesn't run at setting 1 , change to setting 2.

Pr10-02	0: No function
Type of	1: Phase A leads in a forward run command and phase B leads in a reverse
Encoder	run command
Input Setting	2: Phase B leads in a forward run command and phase A leads in a reverse
	run command
	3: Phase A is a pulse input and phase B is a direction input. (low input=reverse direction, high input=forward direction)
	4: Phase A is a pulse input and phase B is a direction input. (low input=forward direction, high input=reverse direction)
	5: Single-phase input

Step 3

Motor tuning

■ Setting the parameters according to the motor type (PM or IM)

- Motor Auto-tuning: When the Source of the Operation Command is set to digital keypad (Pr.00-15=2, refer to step 1)
■ Control method: Please set Pr.00-09 to 8.

Pr00-09	0: V/f Control
Control	1: V/f Control + Encoder (VFPG)
Method	

2: Sensorless vector control (SVC)
3: FOC vector control + Encoder (FOCPG)
4: Torque control + Encoder (TQCPG)
8: FOC PM control (FOCPM)

- NOTE: Setting parameter by the motor type (PM or IM).

■ Inputting the nameplate information on the motor into Pr.01-00~01-02
Pr01-00 $\quad 10.00 \sim 400.00 \mathrm{~Hz}$
Maximum Output Frequency

```
Pr01-01 0.00~400.00Hz
1st Output Frequency Setting 1
(base frequency/motor rated
frequency)
```

Pr.01-02 230V models: 0.0V~255.0V
1 st Output Voltage Setting 1460 V models: $0.0 \mathrm{~V} \sim 510.0 \mathrm{~V}$
(base voltage/ motor rated
voltage)

【IM (Induction Motor】

- Motor Auto-tuning: When the Source of the Operation Command is set to digital keypad (Pr.00-15=2, refer to step 1) and setting Pr.05-00=2

Pr05-00	0: No function
Motor Auto Tuning	1: Rolling test (Rs, Rr, Lm, Lx, no-load current), (Motor runs)
	2: Static Test (Motor doesn't run)

NOTE 1: It doesn't need to release the brake in this auto tuning operation. Please make sure that the electromagnetic valve is ON when it is used between the AC motor drive and motor. When Pr.05-00 is set to 2, no-load current of motor must be entered into Pr.05-05. The warning message "Auto tuning" will be displayed on the digital keypad during tuning until it is finished. Then, the measure result will be saved into Pr.05-06~Pr.05-09.

NOTE 2: It needs to finish motor auto tuning before measuring the angle between magnetic pole and PG origin.

Full-load Current of Motor
Pr05-02 0.00~655.35kW

Rated Power of Motor

```
Pr05-03 0~65535
Rated Speed of Motor(rpm)
```

| Pr05-04 2~9 |
| :--- | :--- |
| Number of |
| Motor Poles |

【Permanent Magnet Motor】

- Motor Auto-tuning: When the Source of the Operation Command is set to digital keypad (Pr.00-15=2, refer to step 1) and setting Pr.08-00=2

Pr08-00	
Motor Auto Tuning	0: No function
1: Only for the unloaded motor, auto measure the Angle	
between magnetic pole and PG origin (08-09)	
2: For PM parameters	

NOTE 1: It doesn't need to release the brake in this auto tuning operation. Please make sure that the electromagnetic valve is ON when it is used between the AC motor drive and motor. The warning message "Auto tuning" will be displayed on the digital keypad during tuning until it is finished. Then, the measure result will be saved into Pr.08-05 and Pr.08-07. (Pr.08-05 is Rs of Motor and Pr.08-07 is Lq of Motor)
NOTE 2: It is recommended to set Pr.08-00 to 1 (unloaded motor) for the most accurate calculation. If it needs to execute this function with loaded motor, please balance the carriage before execution. When Pr. $08-00=1$, please note:

- When executing the function of auto measure the Angle between magnetic pole and PG origin, it is recommended to stop the carriage car at the middle level.
- Make sure that the electromagnetic valve and mechanical brake are OFF before executing this function.
- When Pr. $08-00=1$, please execute this function with unloaded motor to get the most accurate result. If it needs to execute this function with loaded motor, please balance the carriage before execution. Make sure the balance by releasing the brake manually before running. This balance will affect the accuracy and the accuracy will influence the power efficiency in driving the motor.

NOTE 3: If it doesn't allow balancing carriage in the measured environment, it can set Pr. 08-00 to 3 for executing this function. It will have a difference of $15 \sim 30^{\circ}$ by the different encoder type.

- When Pr.08-00 is set to 3 , the driver will execute the function by the setting of Pr.10-00. The difference between Pr.08-00=3 and Pr.08-00=1 is it doesn't need to put the balanced carriage when Pr. $08-00=3$. Besides, the operation status of the motor will be as shown in the above table (Pr. $10-00=1,2,3$ and 5 , the motor will run. Pr. $10-00=4$ and 6 , the motor won't run)
- When Pr. $08-00=3$, please make sure if the setting of Pr.10-02 is correct. The incorrect setting will result in the wrong position of the magnetic pole and make the wrong angle between magnetic pole and PG origin.

NOTE 4: The warning message "Auto tuning" will be displayed on the digital keypad during tuning until it is finished. Then, the measure result will be saved into Pr.08-09.

NOTE 5: If the warning message "Auto Tuning Err" displayed on the digital keypad during tuning due to abnormal drive or human factor, please check if the wiring is correct. When the warning message "PG Fbk Error" displayed on the digital keypad, please change the setting of Pr.10-02 (for example: if it was set to 1 , please change it to 2). When the warning message "PG Fbk Loss" is displayed on the digital keypad, please check the feedback of Z-phase pulse.

Pr.08-01	$(40 \sim 120 \%)^{*} 00-01$ Amps
Full-load Current of Motor	

Pr.08-02 Rated power of Motor	$0.00 \sim 655.35 \mathrm{~kW}$

Pr.08-03 Rated speed of Motor (rpm)	$0 \sim 65535$

Pr.08-04
2~96
Number of Motor Poles

- Measure the angle between magnetic pole and PG origin

To execute "RUN" by keypad or digital terminals:

1. Using digital keypad: setting Pr.08-00 to 1 and press "RUN" to execute "auto measure the angle between magnetic pole and PG origin". Please note that if the electromagnetic valve and brake are not controlled by the AC motor drive, please release it by manual.
2. Using external terminals: setting Pr.00-14=3 (frequency source) and Pr.00-15=1 (operation source). Please use "inspection" function to execute "auto measure the angle between magnetic pole and PG origin".

For the IM, it doesn't need to detect the position of the magnetic pole; this function (auto measure the Angle between magnetic pole and PG origin) doesn't have to be executed.

Measure the angle between magnetic pole and PG origin: Pr.08-00=1 or 3

Pr.08-00	0: No function
Motor Auto tuning	1: Only for the unloaded motor, auto measure the Angle between magnetic pole and PG origin (08-09)
	2: For PM parameters 3: Auto measure the Angle between magnetic pole and PG origin (08-09)

NOTE: The function of "auto measure the angle between magnetic pole and Pg origin" only can be enabled after finishing motor auto-tuning.

Step 4

Multi-Step Speed setting or Analog setting (Do not wire the two settings at the same time)
A. Multi-step speed settings

- Confirm the total speed steps (high speed, middle speed, low speed, creep, inspection and level auto-learning)
- Make sure that the setting of step speeds and the action of the corresponding terminals of multi-function input commands are correct.
■ Setting multi-step speeds in Pr.04-00 to Pr.04-15

	Zero Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	1st Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	2nd Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
3rd Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
4th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
5th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
6th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
7th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
8th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
9th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
10th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
11th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
12th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
13th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
14th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	
15th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	

NOTE: It is recommended to set the max. operating frequency to the half of max. operating frequency before confirming the setting of each step speed and the action of the corresponding terminals of multi-function input commands.

- Setting the acceleration/deceleration with Pr.01-23 and the setting 08 (the 1st, 2nd acceleration/deceleration time selection) and 09 (the 3rd, 4th acceleration/deceleration time selection) of multi-function input command Pr.02-01~02-08.
- Settings of acceleration/deceleration time: Pr.01-12~Pr.01-19

Settings of Pr.01-12 to Pr.01-19	Accel Time 1	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 1	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 2	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 2	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 3	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 3	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 4	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 4	$0.00 \sim 600.00 \mathrm{sec}$

NOTE: it is recommended to set the Pr.01-31 (deceleration time) to the small value in the trial run and execute smooth test after all the actions are correct.

■ Settings of S curve: Pr.01-24~Pr.01-30

Settings of Pr.01-24 to Pr.01-30	S-curve for Acceleration Departure Time S1	0.00~25.00 sec
	S-curve for Acceleration Arrival Time S2	0.00~25.00 sec
	S-curve for Deceleration Departure Time S3	0.00~25.00 sec
	S-curve for Deceleration Arrival Time S4	0.00~25.00 sec
	Mode Selection when Frequency < Fmin	0: Output waiting 1: Zero-speed operation 2: Fmin (4th output frequency setting)
	Switch Frequency for S3/S4 Changes to S5	$0.00 \sim 400.00 \mathrm{~Hz}$
	S-curve for Deceleration Arrival Time S5	0.00~25.00 sec

NOTE: it is recommended to set the S curve time to 0 in trial run and execute smooth test after all the actions are correct.

B. Analog setting

1. Set $\operatorname{PrOO}-14=2$, frequency command is assigned by the external analog signal.
2. Set Pr00-15 =1, operating command is assigned by the external terminals.
3. In order to work with the control terminal, set up Pr03-23 or Pr03-24 in accordance with the output mode of the controller
4. Set up Pr03-03, PR03-05 or Pr03-06 to work with the connecting port. Set F to display 0 Hz when the motor drive is going to stop.

Step 5

Inertia: For synchronous motor, set Pr11-05 = 40\%. For asynchronous motor, set Pr11-05 = 80\%.

Pr.11-05	1~300\%
Inertial Ratio	

Step 6

Trial run

This step is used to trial run after finishing the settings of Step 1 to Step 5 to check if it runs normally after executing the inspection with the loaded motor. At the same time, please also check if the operations of multi-function output terminals is normal, such as the action of the brake release and electromagnetic valve correspond to the host controller.

It needs to check the switch between each step speed, current value, the noise in the carriage and noise source during operation.

Step 7

Elevator tuning

1. Setting Pr. 11-00 to bit 0=1

Pr. 11-00	Bit $0=0$: disable
System control	Bit $0=1$: ASR Auto tuning, PDFF enable
	Bit $7=1$: When position control is enabled, it doesn't need to set Pr.07-02 (DC Brake Current Level)

2. Smooth test for general operation

- Adjust the setting of Pr.11-05

Pr.11-05	$1 \sim 300 \%$
Inertial Ratio	

Adjust the settings of Pr.11-06 to Pr.11-08

Settings of Pr.11-06 to Pr.11-08	Zero-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$
	Low-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$
	High-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$

3. Start-up adjustment (only for PM)

- Control by the zero-speed position

Setting Pr. 11-00, 10-19, 10-22, 10-23, 02-29 and 10-24

Pr.11-00	Bit 0=0: disable
System control	Bit 0=1: ASR Auto tuning, PDFF enable
	Bit $7=1$: When position control is enabled, it doesn't need to set Pr.07-02 (DC Brake Current Level) Bit 15=0: when power is applied, it will detect the position of magnetic pole again Bit $15=1$: when power is applied, it will start from the magnetic pole position of previous power failure
Pr.10-19 Zero Speed Gain (P)	$0 \sim 655.00 \%$

NOTE: refer to the explanations in Pr.02-32

Pr. $10-22$ Operation Time of Zero Speed	$0.000 \sim 65.535 \mathrm{sec}$

Pr.10-23	$0.000 \sim 65.535 \mathrm{sec}$
Filter Time of Zero Speed	

Pr.10-24	0: after the brake release set in Pr.02-29
Time for Zero Speed	1: after the brake signal input (Pr.02-01~02-08 is set to 42)
Execution	

Pr.02-29 Brake Release Delay Time when Elevator Starts	$0.000 \sim 65.000$ Sec

NOTE: When Pr.10-24=0, the zero speed control needs to be used with Pr.02-29. (Refer to the explanations in Pr.02-32)

- Function of the preload input

Connect the preload signal to the external terminal of the AC motor drive (AUI1) and setting Pr.03-00=3, 07-19=1, 03-03, 03-06 and 03-09.

Pr.03-00	0: No function
Analog Input 1 (AUI1)	1: Frequency command (torque limit under TQR control mode)
	2: Torque command (torque limit under speed mode)
	3: Torque compensation command
	4-5: Reserved
	6: P.T.C. thermistor input value
	7: Positive torque limit
	8: Negative torque limit
	9: Regenerative torque limit
	10: Positive/negative torque limit

Pr.07-19	0: Disable
Source of Torque Offset	1: Analog input (Pr.03-00)
	2: Torque offset setting (Pr.07-20)
	3: Control by external terminal (by Pr.07-21 to Pr.07-23)

Pr.03-03	$-100.0 \sim 100.0 \%$
Analog Input Bias 1 (AUI1)	

Pr.03-06	0: Zero bias
Positive/negative Bias Mode	1: Lower than bias=bias
(AUI1)	2: Greater than bias=bias
	3: The absolute value of the bias voltage while serving as the center
	4: Serve bias as the center

Pr.03-09	$-500.0 \sim 500.0 \%$
Analog Input Gain 1 (AUI1)	

NOTE: Pr.03-03, 03-06 and 03-09 are used to adjust the analog input signal.

07-19: Source of torque offset
03-00~02: Analog input selections (AUI1/AUI2)
03-03~05: Analog input bias (AUI1/AUI2)
03-06~08: AUI1/AUI2 bias mode

4. Setting of drive stop

Adjusting Pr.01-29, Pr.01-30, Pr.01-31 and Pr.11-19

Pr. $01-29$ Switch Frequency for S3/S4 Changes to S5	$0.00 \sim 400.00 \mathrm{~Hz}$

Pr.01-30	$0.00 \sim 25.00 \mathrm{sec}$
S-curve for Deceleration Arrival Time S5	

Pr. $11-19$	$0 \sim 40 \mathrm{~Hz}$
Zero-speed Holding Bandwidth	

Pr.01-31 Deceleration Time	$0.00 \sim 600.00 \mathrm{sec}$

11 Summary of Parameter Settings

This chapter provides summary of parameter settings for user to gather the parameter setting ranges, factory settings and set parameters. The parameters can be set, changed and reset by the digital keypad.

司, NOTE

1) $N:$ The parameter can be set during operation.
2) For more detail on parameters, please refer to Ch12 Description of Parameter Settings.
3) indicates that the parameters or the setting value only applies on the Direct Docking Mode. The actual functions of each elevator controller vary from one to another. For more information, contact Delta.
4) The parameters described in this user manual are designed for multi-speed mode. The factory setting of direct docking mode are different from the factory setting described in this user manual. If you need to use the direct docking mode, contact Delta for more information.

00 Drive Parameters

Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{4}{>}$	-	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	O 0 0 0	O 0 0 0 1	\sum 0 0 0 4
00-00	Identity Code of AC Motor Drive	108: $220 \mathrm{~V}, 3 \mathrm{HP}$ (single phase) 110: $220 \mathrm{~V}, 5 \mathrm{HP}$ (Single phase) 8: $230 \mathrm{~V}, 3 \mathrm{HP}$ 10: $230 \mathrm{~V}, 5 \mathrm{HP}$ 11: $460 \mathrm{~V}, 5 \mathrm{HP}(4.0 \mathrm{~kW}$) 12: $230 \mathrm{~V}, 7.5 \mathrm{HP}$ 13: $460 \mathrm{~V}, 7.5 \mathrm{HP}$ 14: $230 \mathrm{~V}, 10 \mathrm{HP}$ 15: $460 \mathrm{~V}, 10 \mathrm{HP}$ 16: $230 \mathrm{~V}, 15 \mathrm{HP}$ 17: $460 \mathrm{~V}, 15 \mathrm{HP}$ 18: $230 \mathrm{~V}, 20 \mathrm{HP}$ 19: $460 \mathrm{~V}, 20 \mathrm{HP}$ 20: $230 \mathrm{~V}, 25 \mathrm{HP}$ $21: 460 \mathrm{~V}, 25 \mathrm{HP}$ $22: 230 \mathrm{~V}, 30 \mathrm{HP}$ $23: 460 \mathrm{~V}, 30 \mathrm{HP}$ $24: 230 \mathrm{~V}, 40 \mathrm{HP}$ $25: 460 \mathrm{~V}, 40 \mathrm{HP}$ $26: 230 \mathrm{~V}, 50 \mathrm{HP}$ $27: 460 \mathrm{~V}, 50 \mathrm{HP}$ $29: 460 \mathrm{~V}, 60 \mathrm{HP}$ $31: 460 \mathrm{~V}, 75 \mathrm{HP}$ $33: 460 \mathrm{~V}, 100 \mathrm{HP}$	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
00-01	Display AC Motor Drive Rated Current	Display by models	Read only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
00-02	Parameter Reset	0 : No function 1: Read only	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

			5 : Direct docking mode only 8: No function 9: All parameters are reset to factory settings(base frequency is 50 Hz) 10: All parameters are reset to factory settings (base frequency is 60 Hz							
N	00-03	Start-up Display Selection	0 : Frequency command 1: Output frequency 2: DC BUS voltage 3: Output current 4: Output voltage 5: User defined (00-04)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	00-04	Content of Multi-function Display	0 : Display output current (A) (Unit: Amps) 1: Reserved 2: Display actual output frequency (H.) (Unit: Hz) 3: Display DC-BUS voltage (v) (Unit: Vdc) 4: Display output voltage (E) (Unit: Vac) 5: Display output power angle (n) (Unit: deg) 6: Display output power in kW (P) (Unit: kW) 7: Display actual motor speed rpm (r) (Unit: rpm) 8: Display estimate output torque \% (t) (Unit: \%) 9: Display PG feedback (G) (refer to Pr.10-00,10-01) (Unit: PLS) 10: Display PID feedback (b) (Unit: \%) 11: Display AUI1 in \% (1.) (Unit: \%) 12: Reserved 13: Display AUI2 in \% (2.) (Unit: \%) 14: Display the temperature of heat sink In ${ }^{\circ} \mathrm{C}$ (c.) (Unit: ${ }^{\circ} \mathrm{C}$). 15: Display the temperature of IGBT In ${ }^{\circ} \mathrm{C}$ (c.) (Unit: ${ }^{\circ} \mathrm{C}$). 16: The status of digital input (ON/OFF) (i) 17: The status of digital output (ON/OFF) (o) 18: Multi-step speed (S) 19: The corresponding CPU pin status of digital input (d)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

			20: The corresponding CPU pin status of digital output (0.) 21~23: Reserved 24: AC output voltage when error occurred 25: DC-side voltage when error occurred 26: Motor's frequency when error occurred 27: Output current when error occurred 28: Output frequency when error occurred 29: Frequency command when error occurred 30: Output power when error occurred 31: Output torque when error occurred 32: Input terminal status when error occurred 33: Output terminal status when error occurred 34: Status of motor drive when error occurred 35: Display MI status \& MO status on LED keypad.							
	00-05	User-Defined Coefficient K	Digit 4: decimal point number (0 to 3) Digit 3-0: 40 to 9999	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-06	Software Version	READ ONLY	\#.\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-07	Password Input	1 to 9998 and 10000 to 65535 0 to 2: times of wrong password	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-08	Password Set	1 to 9998 and 10000 to 65535 0: No password set or successful input in Pr.00-07 1: Password has been set	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-09	Control Method	0: V/f Control 1: V/f Control + Encoder (VFPG) 2: Sensorless vector control (SVC) 3: FOC vector control + Encoder (FOCPG) 4: Torque control + Encoder (TQCPG) 8: FOC PM control (FOCPM)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-10	Speed Unit	$0: \mathrm{Hz}$ 1: m/s 2: ft./s 3 : Direct docking mode only	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-11	Output Direction Selection	0: FWD: counterclockwise, REV: clockwise 1: FWD: clockwise, REV: counterclockwise	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-12	Carrier Frequency	2~15KHz	12	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
-	00-13	Auto Voltage Regulation (AVR) Function	0: Enable AVR 1: Disable AVR 2: Disable AVR when deceleration stop	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	00-14	Source of the Master Frequency Command	1: RS-485 serial communication or digital keypad (KPc-CC01) 2: External analog input (Pr. 03-00) 3: Digital terminals input (Pr. 04-00~04-15) 4 : Direct docking mode only	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
v	00-15	Source of the Operation Command	1: External terminals 2: RS-485 serial communication or digital keypad (KPC-CC01)	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

01 Basic Parameters

	Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{1}{>}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	$\stackrel{\cup}{\infty}$	O	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	\sum 0 0 0 4
	01-00	Maximum Output Frequency	$10.00 \sim 400.00 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	01-01	1st Output Frequency Setting 1 (base frequency / motor's rated frequency)	0.00~400.00Hz	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	01-02	1st Output Voltage Setting 1 (base voltage/ motor's rated voltage)	$\begin{aligned} & \text { 230V series: } 0.0 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { series: } 0.0 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 220.0 \\ & 440.0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	01-03	$2^{\text {nd }}$ Output Frequency Setting 1	0.00~400.00Hz	0.50	\bigcirc	\bigcirc				
	01-04	$2^{\text {nd }}$ Output Voltage Setting 1	$\begin{aligned} & 230 \mathrm{~V} \text { series: } 0.0 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { series: } 0.0 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	\bigcirc	\bigcirc				
	01-05	$3^{\text {rd }}$ Output Frequency Setting 1	0.00~400.00Hz	0.50	\bigcirc	\bigcirc				
	01-06	$3{ }^{\text {rd }}$ Output Voltage Setting 1	230V series: $0.0 \mathrm{~V} \sim 255.0 \mathrm{~V}$ 460V series: $0.0 \mathrm{~V} \sim 510.0 \mathrm{~V}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	\bigcirc	\bigcirc				
	01-07	$4^{\text {th }}$ Output Frequency Setting 1	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	01-08	$4^{\text {th }}$ Output Voltage Setting 1	$\begin{aligned} & \text { 230V series: } 0.0 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { series: } 0.0 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	\bigcirc	\bigcirc				
	01-09	Starting Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.50	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	01-10	Output Frequency Upper Limit	0.00~400.00Hz	120.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-11	Output Frequency Lower Limit	0.00~400.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-12	Accel Time 1	0.00~600.00 sec.	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-13	Decel Time 1	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-14	Accel Time 2	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-15	Decel Time 2	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-16	Accel Time 3	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-17	Decel Time 3	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-18	Accel Time 4	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-19	Decel Time 4	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-20	JOG Acceleration Time	0.00~600.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-21	JOG Deceleration Time	0.00~600.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-22	JOG Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	6.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	01-23	Switch Frequency between 1st/4th Accel/ Decel	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
,	01-24	S-curve for Acceleration Departure Time S1	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
1	01-25	S-curve for Acceleration Arrival Time S2	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
,	01-26	S-curve for Deceleration Departure Time S3	0.00~25.00sec.	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	01-27	S-curve for Deceleration Arrival Time S4	0.00~25.00sec.	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-28	Mode of Selection when Frequency < Fmin	0: Output waiting 1: Zero-speed operation 2: Fmin (4th output frequency setting)	1	\bigcirc	\bigcirc	\bigcirc			
,	01-29	Switch Frequency for S3/S4 Changes to S5	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

Ch11 Summary of Parameter Settings

N	$01-30$	S-curve for Deceleration Arrival Time S5	$0.00 \sim 25.00$ sec.	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\mathcal{N}	$01-31$	Deceleration Time when Operating without RUN Command	$0.00 \sim 600.00$ sec.	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$01-32$	Direct docking mode only	\bigcirc						

02 Digital Input/ Output Parameters

Pr.	Explanation	Setting Range	Factory Setting	>	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & >1 \end{aligned}$	$\stackrel{\text { U }}{\substack{~}}$	O	O	\sum 0 0 0 L
02-00	2-wire/3-wire Operation Control	0: FWD/STOP, REV/STOP 1: FWD/STOP, REV/STOP (Line Start Lockout) 2: RUN/STOP, REV/FWD 3: RUN/STOP, REV/FWD (Line Start Lockout) 4: 3-wire 5: 3-wire (Line Start Lockout)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
02-01	Multi-Function Input Command 1 (MI1) (it is Stop terminal for 3-wire operation)	0 : no function	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		1: multi-step speed command 1		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-02	Multi-Function Input Command 2 (MI2)	2: multi-step speed command 2	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-03	Multi-Function Input Command 3 (MI3)	3: multi-step speed command 3	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-04	Multi-Function Input Command 4 (MI4)	4: multi-step speed command 4	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-05	Multi-Function Input Command 5 (MI5)	5: Reset	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
02-06	Multi-Function Input Command 6 (MI6)	6: JOG command	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-07	Multi-Function Input Command 7 (MI7)	7: acceleration/ deceleration speed inhibit	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-08	Multi-Function Input Command 8 (MI8)	8: the 1st, 2nd acceleration/deceleration time selection	40	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		9: the 3rd, 4th acceleration/deceleration time selection		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		10: EF input (07-28)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		11: Reserved							
		12: Stop output		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		13~14: Reserved							
		15: operation speed command form AUI1		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		16: Reserved							
		17: Operation speed command form AUI2		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		18: Emergency Stop (07-28)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		19~23: Reserved							
		24: FWD JOG command		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		25: REV JOG command		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		26: Reserved							
		27: ASR1/ASR2 selection		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		28: Emergency stop (EF1) (Motor coasts to stop)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		29-30: Reserved							
		31: High torque bias (by Pr.07-21)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		32: Middle torque bias (by Pr.07-22)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		33: Low torque bias (by Pr.07-23)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		34-37: Reserved							
		38: Disable write EEPROM function		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		39: Torque command direction						\bigcirc	
		40: Enable drive function		\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
		41: Detection of magnetic contactor		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		42: Mechanical brake 1		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		43: EPS function		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

			44: Mechanical brake 2		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			45~51: Direct docking mode only \downarrow							
N	02-09	Digital Input Response Time	0.001~30.000sec.	0.005	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-10	Digital Input Operation Direction	0~65535	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-11	Multi-function Output 1: RA, RB, RC (Relay1)	0: No function	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			1: Operation indication		O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-12	Multi-function Output 2: MRA, MRB, MRC (Relay2)	2: Operation speed attained	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			3: Desired frequency attained 1 (Pr.02-25)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	02-13	Multi-function Output 3: R1A, R12C (Relay3)	4: Desired frequency attained 2 (Pr.02-27)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	02-14	Multi-function Output 4: R2A, R12C (Relay4)	5: Zero speed (frequency command)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	02-15	Multi-function Output 5: (MO1)	6: Zero speed with stop (frequency command)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	02-16	Multi-function Output 6: (MO2)	7: Over torque (OT1) (Pr.06-05~06-07)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			8: Over torque (OT2) (Pr.06-08~06-10)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			9: Drive ready	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			10: User-defined Low-voltage Detection (LV)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			11: Malfunction indication	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			12: Mechanical brake release (Pr.02-29, Pr.02-30)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			13: Overheat (Pr.06-14)	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			14: Brake chopper signal		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			15: Motor-controlled magnetic contactor output		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			16: Slip error (oSL)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
			17: Malfunction indication 1		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			18: Reserved							
			19: Brake chopper output error		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			20: Warning output		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			21: Over voltage warning		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			22: Over-current stall prevention warning		\bigcirc	\bigcirc	\bigcirc			
			23: Over-voltage stall prevention warning		\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
			24: Operation mode indication (Pr.00-15キ0 and PU LED on KPC-CC01 is off)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			25: Forward command		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			26: Reverse command		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			27: Output when current >= Pr.02-33		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			28: Output when current < Pr.02-33		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			29: Output when frequency >= Pr.02-34		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			30: Output when frequency < Pr.02-34		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			31: Power generation direction and status verify		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			32: Power generation direction		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			33: Zero speed (actual output frequency)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
			34: Zero speed with Stop (actual output frequency)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
			35: Fault output option 1 (Pr.06-22)		\bigcirc	O	\bigcirc	\bigcirc	O	\bigcirc
			36: Fault output option 2 (Pr.06-23)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			37: Fault output option 3 (Pr.06-24)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			38: Fault output option 4 (Pr.06-25)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			39: Reserved							
			40: Speed attained (including zero speed)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
			41: Reserved							
			42: STO Output Error							
			43~44: Direct docking mode only \downarrow							

03 Analog Input/ Output Parameters

	Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{\text { - }}{ }$	$\xrightarrow{0}$	む	O	O	n 0 0 0 4
	03-00	Analog Input 1 (AUI1)	0 : No function	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-01	Reserved	1: Frequency command (torque limit under TQR control mode)							
	03-02	Analog Input 3 (AUI2)	2: Torque command (torque limit under speed mode)	0					\bigcirc	
			3: Preload Input		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			4-5: Reserved							
			6: P.T.C. thermistor input value		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			7: Positive torque limit					\bigcirc		\bigcirc
			8: Negative torque limit					\bigcirc		\bigcirc
			9: Regenerative torque limit					\bigcirc		\bigcirc
			10: Positive/negative torque limit					\bigcirc		\bigcirc
	03-03	Analog Input Bias 1 (AUI1)	-100.0~100.0\%	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-04	Reserved								
	03-05	Analog Input Bias 3 (AUI2)	-100.0~100.0\%	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-06	Positive/negative Bias Mode (AUI1)	0: Zero bias 1: Serve bias as the center, lower than bias=bias 2: Serve bias as the center, greater than bias=bias 3: The absolute value of the bias voltage while serving as the center (single polar) 4: Serve bias as the center (single polar)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-07	Reserved								
	03-08	Positive/negative Bias Mode (AUI2)		0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-09	Analog Input Gain 1 (AUI1)	0.0~500.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-10	Reserved								
	03-11	Analog Input Gain 3 (AUI2)	0.0~500.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-12	Analog Input Delay Time (AUI1)	0.00~2.00sec.	0.01	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	03-13	Reserved								
\checkmark	03-14	Analog Input Filter Time (AUI2)	0.00~2.00sec.	0.01	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-15	Reserved								
	03-16	Reserved								
\checkmark	03-17	Analog Output Selection 1	0 : Output frequency (Hz)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			1: Frequency command (Hz)		\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			2: Motor speed (RPM)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			3: Output current (rms)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			4: Output voltage		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			5: DC Bus Voltage		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			6: Power factor angle		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			7: Power factor		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			8: Output torque		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			9: AUI1		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			10: Reserved							
			11: AUI2		\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			12: q -axis current		\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			13: q-axis feedback value		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			14: d-axis current		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			15: d-axis feedback value		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			16: q-axis voltage		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			17: d-axis voltage		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

04 Multi-Step Speed Parameters

	Pr.	Explanation	Setting Range	Factory Setting	>	0 0	へ	O	0 0 0 0	n 0 0 0 ¢
N	04-00	Zero Step Speed Frequency	0.00~400.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-01	1st Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-02	2nd Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-03	3rd Step Speed Frequency	0.00~400.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-04	4th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-05	5th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-06	6th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-07	7th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-08	8th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-09	9th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-10	10th Step Speed Frequency	0.00~400.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-11	11th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-12	12th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-13	13th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-14	14th Step Speed Frequency	0.00~400.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-15	15th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	$\begin{gathered} 04-16 \\ \tilde{04-99} \end{gathered}$	Direct docking mode only								

05 IM Parameters

	Explanation	Setting Range	Factory Setting	>	0 0	$\underset{\omega}{\substack{0}}$	O	O 0 0 0 1	\sum 0 0 0 4
	Motor Auto Tuning	0: No function 1: Rolling test (Rs, Rr, Lm, Lx, no-load current) 2: Static test	0	\bigcirc					
	Full-load Current of Motor	(40~120\%) *00-01 Amps	\#.\#\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	Rated power of Motor	0.00~655.35kW	\#.\#\#			\bigcirc	\bigcirc	\bigcirc	
	Rated speed of Motor (rpm)	0~65535	1710		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	Number of Motor Poles	2~48	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	No-load Current of Motor	0~ Pr05-01 <factory setting>	\#.\#\#		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	Rs of Motor	0.000~65.535	0.000			\bigcirc	\bigcirc	\bigcirc	
	Rr of Motor	0.000~65.535	0.000			\bigcirc	\bigcirc	\bigcirc	
	Lm of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0			\bigcirc	\bigcirc	\bigcirc	
	Lx of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0			\bigcirc	\bigcirc	\bigcirc	
	Torque Compensation Time Constant	0.001~10.000sec.	0.020			\bigcirc			
	Slip Compensation Time Constant	0.001~10.000sec.	0.100			\bigcirc			
	Torque Compensation Gain	0~10	0	\bigcirc	\bigcirc				
	Slip Compensation Gain	0.00~10.00	0.00			\bigcirc			
	Slip Deviation Level	0~1000\% (0: disable)	0		\bigcirc	\bigcirc	\bigcirc		
	Detection Time of Slip Deviation	0.0~10.0sec.	1.0		\bigcirc	\bigcirc	\bigcirc		
	Over Slip Treatment	0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop	0		\bigcirc	\bigcirc	\bigcirc		
	Hunting Gain	0~10000 (0: disable)	2000	\bigcirc	\bigcirc	\bigcirc			
	Accumulative Motor Operation Time (Min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Accumulative Motor Operation Time (day)	00~65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Core Loss Compensation	0~250\%	10			\bigcirc			
	Accumulative Drive Power-on Time (Min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Accumulative Drive Power-on Time (day)	00~65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Slip compensation gain \% (electricity generating mode)	0.0~100.0 \%	0.0	\bigcirc		\bigcirc			
	Slip compensation gain \% (electric mode)	0.0~100.0 \%	0.0	\bigcirc		\bigcirc			

06 Protection Parameters

	Pr.	Explanation	Setting Range	Factory Setting	>	$\stackrel{0}{0}$	u	O	O	\sum 0 0 0 U
N	06-00	Low Voltage Level	$\begin{aligned} & 160.0 \sim 220.0 \mathrm{Vdc} \\ & 320.0 \sim 440.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 180.0 \\ & 360.0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-01	Phase-loss protection	0: Warm and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-02	Over-Current Stall Prevention during Acceleration	00: disable 00~250\% (rated current of the motor drive)	00	\bigcirc	\bigcirc	\bigcirc			
N	06-03	Over-current Stall Prevention during Operation	00: disable 00~250\% (rated current of the motor drive)	00	\bigcirc	\bigcirc	\bigcirc			
N	06-04	Accel. / Decel. Time Selection of Stall Prevention at constant speed	0: by current accel/decel time 1: by the 1 st accel/decel time 2: by the 2nd accel/decel time 3: by the 3rd accel/decel time 4: by the 4th accel/decel time 5: by auto accel/decel time	0	\bigcirc	\bigcirc	\bigcirc			
N	06-05	Over-torque Detection Selection (OT1)	0 : disable 1: over-torque detection during constant speed operation, continue to operate after detection 2: over-torque detection during constant speed operation, stop operation after detection 3: over-torque detection during operation, continue to operate after detection 4: over-torque detection during operation, stop operation after detection	0	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-06	Over-torque Detection Level (OT1)	10~250\% (rated current of the motor drive)	150	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-07	Over-torque Detection Time (OT1)	0.1~60.0sec.	0.1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-08	Over-torque Detection Selection (OT2)	0 : disable 1: over-torque detection during constant speed operation, continue to operate after detection 2: over-torque detection during constant speed operation, stop operation after detection 3: over-torque detection during operation, continue to operate after detection 4: over-torque detection during operation, stop operation after detection	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-09	Over-torque Detection Level (OT2)	10~250\% (rated current of the motor drive)	150	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-10	Over-torque Detection Time (OT2)	0.1~60.0sec.	0.1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-11	Current Limit	0~250\% (rated current of the motor drive)	200				\bigcirc	O	\bigcirc
	06-12	Electronic Thermal Relay Selection	0 : Inverter motor 1: Standard motor 2: Disable	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-13	Electronic Thermal Characteristic	30.0~600.0sec.	60.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-14	Heat Sink Over-heat (OH) Warning	$0.0 \sim 110.0^{\circ} \mathrm{C}$	90.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-15	Stall Prevention Limit Level	0~100\% (Refer to Pr06-02, Pr06-03)	50	\bigcirc	\bigcirc	\bigcirc			
	06-16	Present Fault Record	0 : No fault	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

06-17	Second Most Recent Fault Record	1: Over-current during acceleration (ocA)	0	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
06-18	Third Most Recent Fault Record	2: Over-current during deceleration (ocd)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-19	Fourth Most Recent Fault Record	3: Over-current during constant speed (ocn)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-20	Fifth Most Recent Fault Record	4: Ground fault (GFF)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-21	Sixth Most Recent Fault Record	5: IGBT short-circuit (occ) 6: Over-current at stop (ocS) 7: Over-voltage during acceleration (ovA) 8: Over-voltage during deceleration (ovd) 9: Over-voltage during constant speed (ovn) 10: Over-voltage at stop (ovS) 11: Low-voltage during acceleration (LvA) 12: Low-voltage during deceleration (Lvd) 13: Low-voltage during constant speed (Lvn) 14: Low-voltage at stop (LvS) 15: Input Phase loss (PHL) 16: IGBT over-heat (oH1) 17: Bulk capacitors over-heat (oH2) 18: Abnormal IGBT temperature detected (tH1o) 19: Abnormal bulk capacitor temperature detected (tH2o) 20:Unusal cooling fan operation (FAn)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		21: oL (150\%, 1 minute, motor drive overloaded) 22: Motor overloaded (EoL1) 23: Reserved 24: Motor PTC overheat (oH3) 25: Reserved 26: over-torque 1 (ot1) 27: over-torque 2 (ot2) 28: Reserved 29: Reserved 30: Memory write-in error (cF1) 31: Memory read-out error (cF2) 32: Isum current detection error (cd0) 33: U-phase current detection error (cd1) 34: V-phase current detection error (cd2) 35: W-phase current detection error (cd3) 36: CC current clamp hardware error (Hd0) 37: OC(overcurrent) hardware error (Hd1) 38: ov (overvoltage hardware error (Hd2) 39: GFF (ground fault)hardware error (Hd3) 40: Auto tuning error on motor's parameters (AUE) 41: Reserved 42: PG feedback error (PGF1) 43: PG feedback loss (PGF2) 44: PG feedback stall (PGF3) 45: PG slip error (PGF4) 46: Reserved 47: Reserved 48: Reserved 49: External fault input (EF) 50: Emergency stop by external terminals (EF1) 51: Reserved 52: Password error after three attempts (Pcod) 53: Reserved 54: Illegal communication command (cE01)							

			55: Illegal communication address (cE02) 56: Communication data length error (CEO3) 57: Communication being written to a read-only address (cE04) 58: Modbus transmission time-out (cE10) 59: Keypad transmission time-out (cP10) 60: Brake chopper error (BF) 61-63: Reserved 64: Mechanical brake feedback error (MBF) 65: PGF5 hardware error 66: Magnetic contactor error (MCF) 67: Output phase loss (MPHL) 68: CAN Bus disconnected (CANF) 69 ~71: Reserved 72:Safety torque loss (STL1) 73: PGcd hardware error 74: PG absolute signal error (PGHL) 75: PG Z phase signal loss (PGAF) 76: Safety torque output stops (STO) 77: Safety torque loss 2 (STL2) 78: Safety torque loss 3 (STL3) *The definition of codes \#69~\#71 have been modified in v1.04. See Ch14 for more information.							
	06-22	Fault Output Option 1	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-23	Fault Output Option 2	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-24	Fault Output Option 3	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-25	Fault Output Option 4	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-26	PTC (Positive Temperature Coefficient) Detection Selection	0 : Warn and keep operation 1: Fault and ramp to stop	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-27	PTC Level	0.0~100.0\%	50.0	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-28	Filter Time for PTC Detection	0.00 ~ 10.00 sec.	0.20	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-29	Voltage of Emergency Power	$\begin{aligned} & 24.0 \sim 375.0 \mathrm{Vdc} \\ & 48.0 \sim 750.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 24.0 \\ & 48.0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-30	Setting Method of Fault Output	0: By settings of Pr.06-22~06-25 1: By the binary setting	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-31	Phase Loss Detection of Drive Output at Start up (MPHL)	0: Disable 1: Enable	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-32	Accumulative Drive Power-on Time at the First Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-33	Accumulative Drive Power-on Time at the First Fault (day)	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-34	Accumulative Drive Power-on Time at the Second Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-35	Accumulative Drive Power-on Time at the Second Fault (day)	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-36	Accumulative Drive Power-on Time at the Third Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-37	Accumulative Drive Power-on Time at the Third Fault (day)	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-38	Accumulative Drive Power-on Time at the Fourth Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

Ch11 Summary of Parameter Settings

06-52	Time interval between retrying	0.5~600.0 sec.	10.0	\bigcirc	-	-	-	-	\bigcirc
06-53	Frequency command when the most recent fault has occurred	0.00~655.35Hz	0.00	-	-	-	-	-	-
06-54	Output frequency when the most recent fault has occurred	0.00~655.35Hz	0.00	-	-	-	-	-	\bigcirc
06-55	Output current when the most recent fault has occurred	0.00~655.35Amps	0.00	-	-	-	-	-	\bigcirc
06-56	Most recent fault on motor's frequency	0.00~655.35Hz	0.00	\bigcirc	-	-	-	-	\bigcirc
06-57	Output voltage when the most recent fault has occurred	0.00~6553.5V	0.0	-	-	-	-	-	-
06-58	DC bus voltage when the most recent fault has occurred	0.00~6553.5V	0.0	-	-	-	-	-	\bigcirc
06-59	Output power when the most recent fault has occurred	0.00~6553.5KW	0.0	-	-	-	-	-	-
06-60	Output torque when the most recent fault has occurred	0.00~655.35\%	0.00	-	-	-	-	-	-
06-61	IGBT's temperature when the most recent fault has occurred	$-3276.8 \sim 3276.7^{\circ} \mathrm{C}$	0.0	-	-	-	-	-	-
06-62	Multi-input terminals' status when the most recent fault has occurred	0000h~FFFFh	0000h	-	-	-	-	-	-
06-63	Multi-output terminals' status when the most recent fault has occurred	0000h~FFFFh	0000h	-	-	-	-	-	-
06-64	Motor drive's status when the most recent fault has occurred	0000h~FFFFh	0000h	-	-	-	-	-	-

07 Special Parameters

	Pr.	Explanation	Setting Range	Factory Setting	>	0 0 \square $>$ $>$	$\underset{\sim}{0}$	O 0 0 0	0 0 0 0 0 1	\sum 0 0 0 \square
N	07-00	Brake Chopper Level	230V series: $350.0 \sim 450.0 \mathrm{Vdc}$ 460 V series: $700.0 \sim 900.0 \mathrm{Vdc}$	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	07-01	Reserved								
N	07-02	DC Brake Current Level during start-up	0~100\% (rated current of the motor drive)	0	\bigcirc	\bigcirc	\bigcirc			
N	07-03	DC Brake Activation Time	0.0~60.0sec.	0.7	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-04	DC Brake Stopping Time	0.0~60.0sec.	0.7	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-05	Start Point for DC Brake	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
N	07-06	DC Brake Proportional Gain	1~500	50	\bigcirc	\bigcirc	\bigcirc			
N	07-07	Dwell Time at Accel.	0.00~600.00sec.	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-08	Dwell Frequency at Accel.	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-09	Dwell Time at Decel.	0.00~600.00sec.	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-10	Dwell Frequency at Decel.	0.00~400.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-11	Cooling Fan Control	0 : Cooling fan always ON 1: One minute after AC motor drive stops, cooling fan will be OFF 2: AC motor drive runs and cooling fan ON, AC motor drive stops and cooling fan OFF 3: Cooling fan ON to run when preliminary heat sink temperature attained 4: Cooling always OFF	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-12	Torque command	-150.0~150.0\% (Pr07-14 setting =100\%)	0.0					\bigcirc	
N	07-13	Source of Torque Command	0: Digital keypad (KPC-CC01) 1: RS485 serial communication (RJ-11) 2: Analog signal (Pr.03-00)	2					\bigcirc	
N	07-14	Maximum Torque Command	0 $\sim 300 \%$ (rated torque of the motor drive)	100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-15	Filter Time of Torque Command	0.000~1.000sec.	0.000					\bigcirc	
	07-16	Speed Limit Selection	0: By Pr.07-17 and Pr.07-18 1: Frequency command source (Pr.00-14)	0					\bigcirc	
N	07-17	Torque Mode +Speed Limit	0~120\%	10					\bigcirc	
N	07-18	Torque Mode-Speed Limit	0~120\%	10					\bigcirc	
N	07-19	Source of Torque Offset	0: Disable 1: Analog input (Pr.03-00) 2: Torque offset setting (Pr.07-20) 3: Control by external terminal (by Pr.07-21 to Pr.07-23)	0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-20	Torque Offset Setting	0.0~100.0\% (rated torque of the motor drive)	0.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc

Ch11 Summary of Parameter Settings

N	07-21	High Torque Offset	0.0~100.0\% (rated torque of the motor drive)	30.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-22	Middle Torque Offset	0.0~100.0\% (rated torque of the motor drive)	20.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-23	Low Torque Offset	0.0~100.0\% (rated torque of the motor drive)	10.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-24	Forward Motor Torque Limit	0 $\sim 300 \%$ (rated torque of the motor drive)	200				\bigcirc	\bigcirc	\bigcirc
N	07-25	Forward Regenerative Torque Limit	0 $\sim 300 \%$ (rated torque of the motor drive)	200				\bigcirc	\bigcirc	\bigcirc
N	07-26	Reverse Motor Torque Limit	0 $\sim 300 \%$ (rated torque of the motor drive)	200				\bigcirc	\bigcirc	\bigcirc
N	07-27	Reverse Regenerative Torque Limit	0 $\sim 300 \%$ (rated torque of the motor drive)	200				\bigcirc	\bigcirc	\bigcirc
N	07-28	Emergency Stop (EF) \& Forced Stop Selection	0 : Coast to stop 1: By deceleration Time 1 2: By deceleration Time 2 3: By deceleration Time 3 4: By deceleration Time 4 5: By Pr.01-31	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-29	Time for Decreasing Torque at Stop	0.000~1.000sec.	0.000				\bigcirc	\bigcirc	\bigcirc
N	07-30	DC Brake Current Level Stop	0~100\% (rated current of the motor drive)	0	\bigcirc	\bigcirc	\bigcirc			

08 PM Parameters

Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{1}{>}$	O	$\begin{aligned} & \text { U } \\ & \infty \end{aligned}$	O	O	n 0 0 0 4
08-00	Motor Auto Tuning	0: No function 1: Only for the unloaded motor, auto measure the angle between magnetic pole and PG origin (08-09) 2: For PM parameters 3: Auto measure the angle between magnetic pole and PG origin (08-09)	0						\bigcirc
08-01	Full-load Current of Motor	(40~120\%) *00-01 Amps	\#.\#\#						\bigcirc
08-02	Rated power of Motor	0.00~655.35kW	\#.\#\#						\bigcirc
08-03	Rated speed of Motor (rpm)	0~65535	1710						\bigcirc
08-04	Number of Motor Poles	2~96	4						\bigcirc
08-05	Rs of Motor	0.000~65.535	0.000						\bigcirc
08-06	Ld of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0						\bigcirc
08-07	Lq of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0						\bigcirc
08-08	Back Electromotive Force	0.0~6553.5Vrms	0.0						\bigcirc
08-09	Angle between Magnetic Pole and PG Origin	0.0~360.0 ${ }^{\circ}$	360.0						\bigcirc
08-10	Magnetic Pole Re-orientation	0: Disable 1: Enable	0						\bigcirc

09 Communication Parameters

	Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{1}{>}$	0 0 1 $>$	e	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	0 0 0 0 1	\sum 0 0 0 -
N	09-00	Communication Address	1~254	1						
N	09-01	Transmission Speed	4.8~115.2Kbps	19.2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	09-02	Transmission Fault Treatment	0 : Warn and keep operation 1: Warn and ramp to stop 2: Reserved 3: No action and no display	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	09-03	Time-out Detection	$0.0 \sim 100.0 \mathrm{sec}$.	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	09-04	Communication Protocol	0: 7N1 (ASCII) 1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 701 (ASCII) 4: 7E2 (ASCII) 5: 7 O 2 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 801 (ASCII) 10: 8E2 (ASCII) 11: 802 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 801 (RTU) 16: 8E2 (RTU) 17: 8 O 2 (RTU)	13	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	09-05	Response Delay Time	$0.0 \sim 200.0 \mathrm{~ms}$	2.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} \text { 09-06 } \\ \sim 09-13 \\ \hline \end{gathered}$	Direct docking mode only								

10 Speed Feedback Control Parameters

N	10-16	ASR (Auto Speed Regulation) Control (I) 2	0.000~10.000sec.	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	10-17	ASR 1/ASR2 Switch Frequency	0.00~400.00Hz (0: Disable)	7.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	10-18	ASR Primary Low Pass Filter Gain	0.000~0.350sec.	0.008	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	10-19	Zero Speed Gain (P)	0~655.00\%	80.00						\bigcirc
N	10-20	Zero Speed/ ASR1 Width Adjustment	0.00~400.00Hz	5.00		\bigcirc		\bigcirc		\bigcirc
N	10-21	ASR1/ASR2 Width Adjustment	0.00~400.00Hz	5.00		\bigcirc		\bigcirc		\bigcirc
N	10-22	Zero speed Position Holding Time	0.000~65.535s	0.250						\bigcirc
N	10-23	Filter Time at Zero Speed	0.000~65.535s	0.004						\bigcirc
N	10-24	Time for Executing Zero Speed	0: after the brake release set in Pr.02-29 1: after the brake signal input (Pr.02-01~02-08 is set to 42)	0						\bigcirc
N	10-25	Elevator Leveling (Zero Speed Gain P)	0.0~1000.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	10-26	Elevator Leveling (Zero Speed Integral I)	0.000~10.000sec.	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	10-27	Elevator Starts (Zero Speed Gain P)	0.0~1000.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	10-28	Elevator Starts (Zero Speed Integral I)	0.000~10.000sec.	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	10-29	Setting of PG card frequency division output	0~31	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
N	10-30	Type of PG card frequency division output	0000h~0008h	0000h		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	10-31	PG card C+/C- Selection	0000h~0001h	0000h						

11 Advanced Parameters

	Pr.	Explanation	Setting Range	Factory Setting	>	$\begin{aligned} & 0 \\ & \text { M } \\ & \stackrel{1}{>} \end{aligned}$	$\underset{\omega}{0}$	O	O	\sum 0 0 0 4
	11-00	System Control	Bit $0=0$: no function Bit 0=1: ASR Auto tuning, PDFF enable Bit $7=0$: no function Bit 7=1: When position control is enabled, it doesn't need to set Pr.07-02 (DC Brake Current Level) Bit 9=0: Rolling PG Origin auto-tuning with load (support by PGHSD-1) Bit 9=1: Static PG Origin auto-tuning with load by enabling PGHSD-1 Bit 15=0: when power is applied, it will detect the position of magnetic pole again Bit 15=1: when power is applied, it will start from the magnetic pole position of previous power failure	0000h				\bigcirc		\bigcirc
	11-01	Elevator Speed	0.10~4.00 m/s	1.00				\bigcirc		\bigcirc
	11-02	Sheave Diameter	100~2000mm	400				\bigcirc		\bigcirc
	11-03	Mechanical Gear Ratio	1~100	1				\bigcirc		\bigcirc
	11-04	Suspension Ratio	$\begin{aligned} & 0=1: 1 \\ & 1=2: 1 \end{aligned}$	1				\bigcirc		\bigcirc
	11-05	Inertial Ratio	1~300\%	40				\bigcirc		\bigcirc
	11-06	Zero-speed Bandwidth	1~40Hz	10				\bigcirc		\bigcirc
	11-07	Low-speed Bandwidth	$1 \sim 40 \mathrm{~Hz}$	10				\bigcirc		\bigcirc
	11-08	High-speed Bandwidth	1~40Hz	10				\bigcirc		\bigcirc
	11-09	PDFF Gain Value	0~200\%	30				\bigcirc		\bigcirc
	11-10	Gain for Speed Feed Forward	0~500	0				\bigcirc		\bigcirc
	11-11	Notch Filter Depth	0~20db	0				\bigcirc		\bigcirc
	11-12	Notch Filter Frequency	0.00~200.00Hz	0.00				\bigcirc		\bigcirc
	11-13	Low-pass Filter Time of Keypad Display	0.001~65.535s	0.500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	11-14	Motor Current at Accel.	50~200\%	150						\bigcirc
	11-15	Elevator Acceleration	0.20~2.00m/s ${ }^{2}$	0.75						\bigcirc
	11-16	Reserved	0000h~FFFFh	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	11-17	Reserved	Read Only	\#.\#\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	11-18	Reserved	0000h~FFFFh	\#.\#\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
,	11-19	Zero-speed Holding Speed	1~40Hz	10				\bigcirc		\bigcirc

12 User Defined Parameters

User-defined Parameters with range from Group 00 to Group 11

	Pr.	Explanation (Default Function)	Address	Factory setting	$\stackrel{1}{>}$	$\begin{aligned} & 0 \\ & 0 \\ & \nu \end{aligned}$		O	O	\sum 0 0 0
N	12-00	Present Fault Record	0616	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-01	Present Fault Time of Motor Operation (min.)	0632	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-02	Present Fault Time of Motor Operation (day)	0633	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-03	Frequency Command at Present Fault	0653	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-04	Output Frequency at Preset Fault	0654	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-05	Output Current at Present Fault	0655	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-06	Motor Frequency at Present Fault	0656	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-07	Output Voltage at Present Fault	0657	Read Only	\bigcirc	\bigcirc	O	\bigcirc	-	\bigcirc
N	12-08	DC-Bus Voltage at Present Fault	0658	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-09	Output Power at Present Fault	0659	Read Only	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-10	Output Torque at Present Fault	0660	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
N	12-11	IGBT Temperature of Power Module at Present Fault	0661	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
N	12-12	Multi-function Terminal Input Status at Present Fault	0662	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-13	Multi-function Terminal Output Status at Present Fault	0663	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
N	12-14	Drive Status at Present Fault	0664	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
N	12-15	Second Most Recent Fault Record	0617	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
N	12-16	Second Most Recent Fault Time of Motor Operation (min.)	0634	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
N	12-17	Second Most Recent Fault Time of Motor Operation (day)	0635	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-18	Third Most Recent Fault Record	0618	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-19	Third Most Recent Fault Time of Motor Operation (min.)	0636	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-20	Third Most Recent Fault Time of Motor Operation (day)	0637	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
N	12-21	Fourth Most Recent Fault Record	0619	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-22	Fourth Most Recent Fault Time of Motor Operation (min.)	0638	Read Only	\bigcirc	\bigcirc	O	O	-	\bigcirc
N	12-23	Fourth Most Recent Fault Time of Motor Operation (day)	0639	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-24	Fifth Most Recent Fault Record	0620	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-25	Fifth Most Recent Fault Time of Motor Operation (min.)	0640	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-26	Fifth Most Recent Fault Time of Motor Operation (day)	0641	Read Only	\bigcirc	\bigcirc	O	O	O	O
N	12-27	Sixth Most Recent Fault Record	0621	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-28	Sixth Most Recent Fault Time of Motor Operation (min.)	0642	Read Only	\bigcirc	\bigcirc	O	\bigcirc	O	\bigcirc
N	12-29	Sixth Most Recent Fault Time of Motor Operation (day)	0643	Read Only	\bigcirc	O	\bigcirc	O	O	\bigcirc
	12-30	No factory setting								
	12	No factory setting								

13 View User Defined Parameters

Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{\text { リ }}{ }$	-	¢	O	O	\sum $\substack{\text { O } \\ 0 \\ \text { U }}$
$\begin{gathered} 13-00 \\ \underset{13-31}{\sim} \end{gathered}$	View User Defined Parameters	Pr00-00~ Pr11-19	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

12 Descriptions of Parameter Settings

曰,
 97-9!

NOTE
N: The parameter can be set during operation
00 Drive Parameters
515-9 Identity Code of the AC Motor Drive
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM

> Settings Read Only

Factory setting: \#\#

Rated Current Display of the AC Motor Drive
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory setting: \#\#

Settings Read Only

[1] Pr. 00-00 displays the identity code of the AC motor drive. The capacity, rated current, rated voltage and the max. carrier frequency relate to the identity code. Users can use the following table to check how the rated current, rated voltage and max. carrier frequency of the AC motor drive corresponds to the identity code.
1 Pad Pr.00-01 displays the rated current of the AC motor drive. By reading this parameter the user can check if the AC motor drive is correct.

230V series											
Power (KW)	2.2^{*}	3.7^{*}	4.0	5.5	7.5	11	15	18.5	22	30	37
Horsepower (HP)	3	5	5	7.5	10	15	20	25	30	40	50
ID Code of the Motor Drive (Pr00-00)	108	110	10	12	14	16	18	20	22	24	26
Rated Output Current for General Purposes (A)	12.0	17.0	20	24	30	45	58	77	87	132	161
Range of the Carrier Frequency											
Rated Max. Output Carrier Frequency		$2 \sim 15 \mathrm{kHz}$									

*VFD022ED21S and VFD037ED21S are single phase models.

460 V series												
Power (KW)	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
Horsepower (HP)	5	7.5	10	15	20	25	30	40	50	60	75	100
ID Code of the Motor Drive (Pr00-00)	11	13	15	17	19	21	23	25	27	29	31	33
Rated Output Current for General Purposes (A)	11.5	13	17	23	30	38	45	58	80	100	128	165
Range of the Carrier Frequency	$2 \sim 15 \mathrm{kHz}$							2~ 9kHz			2~ 6kHz	
Rated Max. Output Carrier Frequency	8kHz	10kHz			8kHz			6 kHz				

日是- Parameter Reset

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting : 0
Settings 0 : No Function
1: Read Only
5: Direct docking mode only, contact Delta for more information.
8: Keypad Lock
9: All parameters are reset to factory settings (50 Hz)
10: All parameters are reset to factory settings $(60 \mathrm{~Hz})$
Dal When it is set to 1, all parameters are read only except Pr00-00~Pr00-07 and it can be used with password setting for password protection.
[1] To go back to the factory setting, set $\operatorname{Pr00}-02=9$ or 10 . If it is locked by a password, enter the password to go back to the factory setting. The password will also be erased.
[a] When Pr.00-02=08, the keypad is locked and only Pr.00-02 and Pr00-07 can be set. To unlock the keypad, set Pr.00-02=00.

68-03

Start-up Display Selection
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0
Settings 0: Display the frequency command value. (LED F)
1: Display the actual output frequency (LED H)
2: DC BUS voltage (V)
3: Display the output current (A)
4: Output voltage (E)
5: User defined (see Pr.00-04)
\square This parameter determines the start-up display page after power is applied to the drive.

911-9 Content of Multi-Function Display

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0

Settings 0: Display the output current in A supplied to the motor
1: Reserved
2: Display actual output frequency (H)
3: Display the actual DC BUS voltage in VDC of the AC motor drive
4: Display the output voltage in VAC of terminals U, V, and W to the motor.
5: Display the power factor angle in ${ }^{\circ}$ of terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ to the motor.

6: Display the output power in kW of terminals U, V and W to the motor.
7: Display the actual motor speed in rpm (enabled when using with PG card).
8: Display the estimated value of torque in $\%$ as it relates to current.

9 : Display PG position
10: Display the electrical angle of drive output

11: Display the signal of AUI1 analog input terminal in \%.
Range -10V~10V corresponds to $0 \sim 100 \%$. (1.)
12: Reserved
13: Display the signal of AUI2 analog input terminal in \%.
Range -10V~10V corresponds to 0~100\%. (3.)
14: Display the temperature of heat sink (${ }^{\circ} \mathrm{C}$)
15P: Display the temperature of IGBT in ${ }^{\circ} \mathrm{C}$.
16: Display digital input status ON/OFF (i)
17: Display digital output status ON/OFF (o)
18: Display multi-step speed
19: The corresponding CPU pin status of digital input (i.)
20: The corresponding CPU pin status of digital output (o.)
21~23: Reserved
24: Output AC voltage when malfunction (8)
25: Output DC voltage when malfunction (8.)
26: Motor frequency when malfunction (h)
27: Output current when malfunction (4)
28: Output frequency when malfunction (h.)
29: Frequency command when malfunction
30: Output power when malfunction
31: Output torque when malfunction
32: Input terminal status when malfunction
33: Output terminal status when malfunction
34: Drive status when malfunction
[1] This parameter is to display the content on the page U of digital keypad KPC-CC01. It is helpful for getting the AC motor drive's status by this parameter.

Example 01:

Terminal	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD
Status	0	0	1	0	0	0	0	1	1	0

0: OFF, 1: ON
MI1: Pr.02-01 is set to 1 (multi-step speed command 1)
MI8: Pr.02-08 is set to 8 (the 1st, 2nd acceleration/deceleration time selection)
If REV, MI1 and MI8 are ON, the value is 00000000100001102 in binary and 0086 H in HEX. Meanwhile, if Pr.00-04 is set to " 16 " or " 19 ", it will display " 0086 " with LED U is ON on the keypad KPC-CC01. The setting 16 is the status of digital input and the setting 19 is the corresponding CPU pin status of digital input. User can set to 16 to monitor digital input status and then set to 19 to check if the wire is normal.

Example 02:

Terminal	MO8	MO7	MO6	MO5	MO4	MO3	MO2	MO1	R2A	R1A	MRA	RA
Status	0	0	0	0	1	0	0	0	0	1	1	0

RA: Pr.02-11 is set to 9 (Drive ready).
After applying the power to the AC motor drive, if there is no other abnormal status, the contact will be ON. At the meanwhile, if Pr.00-04 is set to 17 or 20 , it will display 0001 with LED U is $O N$ on the keypad. The setting 17 is the status of digital output and the setting 20 is the corresponding CPU pin status of digital output. User can set 17 to monitor the digital output status and then set to 20 to check if the wire if normal.

Settings Digit 4：decimal point number（0 to 3 ）
Digit 0－3： 40 to 9999
It is used digital setting method
Digital 4：decimal point number（0：no decimal point，1： 1 decimal point and so on．）
Digit 0－3： 40 to 9999 （the corresponding value for the max．frequency）．

Decimal Point Number
［10］For example，if use uses rpm to display the motor speed and the corresponding value to the 4－pole motor 60 Hz is 1800 ．This parameter can be set to 01800 to indicate that the corresponding value for 60 Hz is 1800 rpm ．If the unit is rps，it can be set 10300 to indicate the corresponding value for 60 Hz is 30.0 （a decimal point）．
$1 \mathbb{C l}$ Only frequency setting can be displayed by the corresponding value．
Llal After setting Pr．00－05，it won＇t display the unit of frequency＂Hz＂after returning to the main menu．

明－96

Software Version
Control Mode VF VFPG
Settings Read Only

97－97 Password Input

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting： 0
Settings 1～9998，10000～65535
Display $\quad 0 \sim 2$（times of wrong password）
［1］The function of this parameter is to input the password that is set in Pr．00－08．Input the correct password here to enable changing parameters．You are limited to a maximum of 3 attempts．After 3 consecutive failed attempts，a fault code＂Password Error＂will show up to force the user to restart the AC motor drive in order to try again to input the correct password．
［1］When forgetting password，you can decode by setting 9999 and press buttontwice．Note that all the settings will be set to factory setting．

60－98

Password Set
Control Mode VF
VFPG SVC
FOCPG TQCPG FOCPM
Factory Setting： 0
Settings 1～9998，10000～65535
Display 0：No password set or successful input in Pr．00－07
1：Password has been set
［】］To set a password to protect your parameter settings．
If the display shows 0 ，no password is set or password has been correctly entered in Pr．00－07．
All parameters can then be changed，including Pr．00－08．
The first time you can set a password directly．After successful setting of password the display will show 1.

Be sure to record the password for later use.
To cancel the parameter lock, set the parameter to 0 after inputting correct password into Pr. 00-07. The password consists of min. 2 digits and max. 5 digits.
(1) How to make the password valid again after decoding by Pr.00-07:

Method 1: Re-input original password into Pr.00-08 (Or you can enter a new password if you want to use a changed or new one).
Method 2: After rebooting, password function will be recovered.
Password Decode Flow Chart

00-07

If the password was entered incorrectly after three tries, the keypad will be locked. Turn the power OFF/ON to re-enter the password.

68-69

Control Mode
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Settings 0: V/F control
1: V/F control + Encoder (VFPG)
2: Sensorless Vector Control (SVC)
3 : FOC vector control + Encoder (FOCPG)
4: Torque control + Encoder (TQCPG)
8: FOC Permanent Motor Control+ Encoder (FOCPM)
(1) This parameter determines the control method of the AC motor drive:

Setting 0: user can design V/f ratio by requirement and control multiple motors simultaneously.
Setting 1: User can use PG card with Encoder to do close-loop speed control.

Setting 2：To have optimal control characteristic by auto－tuning．
Setting 3：To increase torque and control speed precisely．（1：1000）
Setting 4：To increase accuracy for torque control．
Setting 8：To increase torque and control speed precisely．（1：1000）．This setting is only for using with permanent magnet motor and others are for induction motor．

8是－19
 Speed Unit

Control Mode	VF	VFPG	SVC	FOCPG	TQCPG FOCPM	Factory Setting： 0
	Settings	$0: \mathrm{Hz}$				
		1：m／s				
		2：ft．／s				
		3：：Dir	ect doc	king mod	nly，contact Delta	mation．

519－！Output Direction Selection

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM

Factory Setting： 0
Settings 0：FWD：counterclockwise，REV：clockwise
1：FWD：clockwise，REV：counterclockwise

日昭－：

Carrier Frequency
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting：12
Settings $2 \sim 15 \mathrm{kHz}$
（1）］This parameter determinates the PWM carrier frequency of the AC motor drive．

Models	$3 \sim 5 \mathrm{HP}$	$7.5-15 \mathrm{HP}$	$20-30 \mathrm{HP}$	$40-60 \mathrm{HP}$	$75-100 \mathrm{HP}$
Settings	$2 \sim 15 \mathrm{kHz}$	$2 \sim 15 \mathrm{kHz}$	$2 \sim 15 \mathrm{kHz}$	$2 \sim 9 \mathrm{kHz}$	$2 \sim 6 \mathrm{kHz}$
Factory Setting	8 kHz	10 kHz	8 kHz	6 kHz	6 kHz

Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
2 kHz	Significant 8 kHz	Minimal Minimal	Significant	Significant

［1］From the table，we see that the PWM carrier frequency has a significant influence on the electromagnetic noise，AC motor drive heat dissipation，and motor acoustic noise．
1 If the carrier frequency is set to be higher than the factory settings in the table above，the motor drive will derate its capacity．See Derating Capacity of Carrier Frequency（Fc）in CH 02.

Auto Voltage Regulation（AVR）Function

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM	Factory Setting： 0	
Settings	0：Enable AVR	
	1：Disable AVR	
	2：Disable AVR when deceleration stop	

[a] It is used to select the AVR mode. AVR is used to regulate the output voltage to the motor. For example, if V / f curve is set to $\mathrm{AC} 200 \mathrm{~V} / 50 \mathrm{~Hz}$ and the input voltage is from 200 to 264 VAC , the output voltage won't excess $\mathrm{AC} 200 \mathrm{~V} / 50 \mathrm{~Hz}$. If the input voltage is from 180 to 200 V , the output voltage to the motor and the input voltage will be in direct proportion.
Da When setting Pr.00-13 to 1 during ramp to stop and used with auto accel. / decel. function, the acceleration will be smoother and faster.

519 - :14 Source of the Master Frequency Command
 Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:1
 Settings 1: RS-485 serial communication or digital keypad (KPC-CC01)
 2: External analog input (Pr. 03-00)
 3: Digital terminals input (Pr.04-00~04-15)
 4: Direct docking mode only, contact Delta for more information.

[a] This parameter determines the drive's master frequency source.

19-15 Source of the Operation Command

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:1
Settings 1: External terminals
2: RS-485 serial communication or digital keypad (KPC-CC01)
Ea ED series is shipped without digital keypad and users can use external terminals or RS-485 to control the operation commandWhen the LED PU is light, the operation command can be controlled by the optional digital keypad (KPC-CC01).

01 Basic Parameters

5: - 8 Maximum Output Frequency

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory
Setting:60.00/50.00
Settings $10.00 \sim 400.00 \mathrm{~Hz}$
[1] This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs -10 V to +10 V) are scaled to correspond to the output frequency range.
[: $\boldsymbol{1}$! 1st Output Frequency Setting (base frequency/ motor's rated frequency)
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:60.00/50.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
凹 This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. If the motor is 60 Hz , the setting should be 60 Hz . If the motor is 50 Hz , it should be set to 50 Hz .

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory
Setting:220.0/440.0
Settings 230 V series $0.1 \sim 255.0 \mathrm{~V}$
460 V series $0.1 \sim 510.0 \mathrm{~V}$
This value should be set according to the rated voltage of the motor as indicated on the motor nameplate. If the motor is 220 V , the setting should be 220.0 . If the motor is 200 V , it should be set to 200.0 .
La There are many motor types in the market and the power system for each country is also difference. The economic and convenience method to solve this problem is to install the AC motor drive. There is no problem to use with the different voltage and frequency and also can amplify the original characteristic and life of the motor.

I:

Control Mode VF VFPG
Settings $0.00 \sim 400.00 \mathrm{~Hz}$

If : 7 2nd Output Voltage Setting

Control Mode VF VFPG
Settings 230V series $0.1 \sim 255.0 \mathrm{~V}$
460 V series $0.1 \sim 510.0 \mathrm{~V}$
[7:-05
3rd Output Frequency Setting
Control Mode VF VFPG
Settings $0.00 \sim 400.00 \mathrm{~Hz}$
If 1-95
3rd Output Voltage Setting
Control Mode
VF VFPG
Settings 230V series $0.1 \sim 255.0 \mathrm{~V}$
460V series 0.1~510.0V
If : 7 ?
4th Output Frequency Setting
Control Mode VF VFPG SVC FOCPG TQCPG
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
[1] V/F curve setting is usually set by the motor's allowable loading characteristics. Pay special attention to the motor's heat dissipation, dynamic balance, and bearing lubricity, if the loading characteristics exceed the loading limit of the motor.
[] For the V/f curve setting, it should be Pr.01-01 \geq Pr.01-03 \geq Pr.01-05 \geq Pr.01-07. There is no limit for the voltage setting, but a high voltage at the low frequency may cause motor damage, overheat, stall prevention or over-current protection. Therefore, please use the low voltage at the low frequency to prevent motor damage.

If: 18 Starting Frequency

Control Mode VF VFPG SVC FOCPG
Factory Setting:0.50
Settings $0.00 \sim 400.00 \mathrm{~Hz}$
[1] When the starting frequency (Pr01-09) is larger than the output frequency (Pr01-11), the frequency output will start when the starting frequency (Pr01-09) reached the F command.

When min. output frequency > start frequency
When start frequency > min. output frequency

Bi-in
 Output Frequency Upper Limit

Settings $0.00 \sim 400.00 \mathrm{~Hz}$

Control Mode VF VFPG SVC FOCPG
FOCPM
Factory Setting:0.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
[1] The upper/lower output frequency setting is used to limit the actual output frequency. If the frequency setting is lower than the start-up frequency, it will run with zero speed. If the frequency setting is higher than the upper limit, it will runs with the upper limit frequency. If output frequency lower limit > output frequency upper limit, this function is invalid.
Settings 0.00~600.00sec

FOCPM Factory Setting:2.00

8: : 4

Control Mode
VF VFPG
Settings $0.00 \sim 600.00 \mathrm{sec}$
©:-45
Control Mode
Decel. Time 2

Settings 0.00~600.00sec
©:-16
Control Mode
Accel. Time 3
VF VFPG SVC FOCPG
FOCPM
Factory Setting:3.00
Settings 0.00~600.00sec
Decel. Time 3
FOCPM
Factory Setting:2.00

VF VFPG SVC FOCPG
FOCPM
Factory Setting:2.00
FOCPM
Factory Setting:3.00

䨋

日: 18
Control Mode
VF VFPG
VF VFPG
Settings 0.00~600.00sec
Accel. Time 4
Settings 0.00~600.00sec
Decel. Time 4

VF VFPG SVC FOCPG
FOCPM
Factory Setting:2.00
Settings $\quad 0.00 \sim 600.00 \mathrm{sec}$
[1] The Acceleration Time is used to determine the time required for the AC motor drive to ramp from OHz to Maximum Output Frequency (Pr.01-00).
[a] The Deceleration Time is used to determine the time require for the AC motor drive to decelerate from the Maximum Output Frequency (Pr.01-00) down to 0 Hz .
1 [1] The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-function Input Terminals settings. The factory settings are acceleration time 1 and deceleration time 1.
[1] The larger against torque and inertia torque of the load and the accel./ decel. time setting is less than the necessary value, it will enable torque limit and stall prevention function. When it happens, actual accel./decel. time will be longer than the action above.

JOG Acceleration Time JOG Deceleration Time Control Mode VF VFPG SVC

FOCPG
FOCPM
Factory Setting：1．00
Settings $0.00 \sim 600.00 \mathrm{sec}$
凹 Both external terminal JOG and key＂JOG＂on the keypad can be used．When the jog command is ON，the AC motor drive will accelerate from OHz （Pr01－07）to jog frequency（Pr．01－22）．When the jog command is OFF，the AC motor drive will decelerate from Jog Frequency to zero．The used Accel．／Decel．time is set by the Jog Accel．／Decel．time（Pr．01－20，Pr．01－21）．
凹The JOG command can＇t be executed when the AC motor drive is running．In the same way，when the JOG command is executing，other operation commands are invalid except forward／reverse commands and STOP key on the digital keypad．
［1］

6:-23
 Switch Frequency between 1st/4th Accel/ decel

Control ModeThis parameter selects the frequency point for transition from acceleration/deceleration time 1 to acceleration/deceleration time 4.
[a] The transition from acceleration/deceleration time 1 to acceleration/deceleration time 4, may also be enabled by the external terminals (Pr. 02-01 to 02-08). The external terminal has priority over Pr. 01-23.

1st/4th Acceleration/Deceleration Switching

S-curve for Acceleration Departure Time S1
S-curve for Acceleration Arrival Time S2
S-curve for Deceleration Departure Time S3
S-curve for Deceleration Arrival Time S4
S-curve for Deceleration Arrival Time S5
Control Mode
VF VFPG
SVC FOCPG
FOCPM
Settings 0.00~25.00sec
Switch Frequency for S3/S4 Changes to S5
VF VFPG SVC FOCPG
FOCPM
Factory Setting:0.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
[1] It is used to give the smoothest transition between speed changes. The accel./ decel. curve can adjust the S-curve of the accel./decel. When it is enabled, the drive will have different accel./decel. curve by the accel./ decel. time.The Actual Accel. Time = selected accel. Time $+(\operatorname{Pr} .01-24+\operatorname{Pr} .01-25) / 2$ The Actual Decel. Time $=$ selected decel. Time $+($ Pr.01-26 + Pr.01-27 + Pr.01-30*2)/2Pr.01-29 is used to set the switch frequency between S4 and S5 for smooth stop.It is recommended to set this parameter to the leveling speed of elevator.

198 Mode Selection when Frequency< Fmin
Control Mode VF VFPG SVC Factory Setting:1
Settings 0: Output Waiting
1: Zero-speed operation
2: Fmin (4th output frequency setting)
[1] When the AC motor drive is at OHz , it will operate by this parameter.
\square When it is set to 1 or 2 , voltage will be output by Fmin corresponding output voltage (Pr.01-08).
! ; ; D Deceleration Time when Operating without RUN Command
Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:2.00
Settings 0.00~600.00sec
[1] The AC motor drive will stop by the setting of this parameter when canceling RUN command. Refer to the figure in Pr.01-29 for details.
If : 3 ? Direct docking mode only
Control Mode
VF
VFPG
SVC FOCPG
FOCPM
Factory Setting:

Settings Contact Delta for more information

02 Digital Input/ Output Parameters

日C-7日

2-wire/3-wire Operation Control
Control Mode
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: 0
Settings 0: FWD/STOP, REV/STOP
1: FWD/STOP, REV/STOP (Line Start Lockout)
2: RUN/STOP, REV/FWD
3: RUN/STOP, REV/FWD (Line Start Lockout)
4: 3-wire
5: 3-wire (Line Start Lockout)Three of the six methods include a "Line Start Lockout" feature. When line start lockout is enabled, the drive will not run once applying the power. The Line Start Lockout feature doesn't guarantee the motor will never start under this condition. It is possible the motor may be set in motion by a malfunctioning switch.
[a] This parameter is used to control operation from external terminals. There are three different control modes.

02-00	Control Circuits of the External Terminal	
$\begin{gathered} 0,1 \\ \text { 2-wire operation control (1) } \\ \text { FWD/STOP } \\ \text { REV/STOP } \end{gathered}$		
2,3 2-wire operation control (2) RUN/STOP REV/FWD		
$4,5$ 3-wire operation control		FWD "CLOSE":RUN MI1 "OPEN":STOP REV/FWD "OPEN": FWD "CLOSE": REV DCM

5E-9	Multi-Function Input Command 1 (MI1) (it is Stop terminal for 3-wire operation)						
			Factory Setting:1				
FE- HE $^{\text {I }}$	Multi-Function Input Command 2 (MI2)						
			Factory Setting:2				
50-93	Multi-Function Input Command 3 (MI3)						
			Factory Setting:3				
50-94	Multi-Function Input Command 4 (MI4)						
			Factory Setting:4				
93-75	Multi-Function Input Command 5 (MI5)						
			Factory Setting: 0				
9E-96	Multi-Function Input Command 6 (MI6)						
			Factory Setting: 0				
93-97	Multi-Function Input Command 7 (MI7)						
			Factory Setting: 0				
98-98	Multi-Function Input Command 8 (MI8)						
	Settings Control Mode	vF	Factory Setting:40				
			VFPG		FOCPG	TQCPG	FOCPM
	0:0: no function	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	1: multi-step speed command 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	2: multi-step speed command 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	3: multi-step speed command 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	4: multi-step speed command 4	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	5: Reset	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	6: JOG command	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	7: acceleration/deceleration speed inhibit	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	8: the 1st, 2nd acceleration/deceleration time selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	9: the 3rd, 4th acceleration/deceleration time selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10: EF input (07-28)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	11: Reserved						
	12: Stop output	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	13~14: Reserved						
	15: AUI1 operation speed command form AUI1	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	16: Reserved	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	17: AUI2 operation speed command form AUI2	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	18: Emergency Stop (07-28)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	19~23: Reserved						
	24: FWD JOG Command	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	25: REV JOG Command	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

26: Reserved
27: ASR1/ASR2 selection
28: Emergency stop (EF1) (Motor coasts to stop)
29~30: Reserved
31: High torque bias (by Pr.07-21)
32: Middle torque bias (by Pr.07-22)
33: Low torque bias (by Pr.07-23)
34~37: Reserved
38: Disable write EEPROM function
39: Torque command direction
40: Enable drive function
41: Detection of magnetic contactor
42: Mechanical brake 1
43: EPS function (Emergency Power System)
44: Mechanical brake 2
45~51: Direct docking mode only
[a] This parameter selects the functions for each multi-function terminal.
[10] If Pr.02-00 is set to 3-wire operation control. Terminal MI1 is for STOP terminal. Therefore, MI1 is not allowed for any other operation.

Settings	Functions	Descriptions
0	No Function	
1	Multi-step speed command 1	15 step speeds could be conducted through the digital statuses of the 4 terminals, and 17 in total if the master speed and JOG are included. (Refer to Pr. 04-00~04-14) When using communication to control the multi-step speed, setting 1 to 4 will be invalid.
2	Multi-step speed command 2	
3	Multi-step speed command 3	
4	Multi-step speed command 4	
5	Reset	After the error of the drive is eliminated, use this terminal to reset the drive.
6	JOG Command	JOG operation
7	Acceleration/deceleration Speed Inhibit	When this function is enabled, acceleration and deceleration is stopped and the AC motor drive starts to accel./decel. from the inhibit point.
		The acceleration/deceleration time of the drive could be selected from this function or the digital statuses of the terminals; there are 4 acceleration/deceleration speeds in total for selection.
8	The $1^{\text {st }}, 2^{\text {nd }}$ acceleration or deceleration time selection	$\begin{array}{ccc}\text { Bit } & \text { Bit } & \text { Descriptions } \\ 0 & 1\end{array}$
		0 0 First acceleration/deceleration time

		When output frequency is less than Pr.01-23 (Switch Frequency between 1st/4th
Accel/decel), it will		
output 4 ${ }^{\text {th }}$ accel/decel		
time.		

32	Middle torque bias	The middle torque bias is according to the Pr.07-22 setting. The low torque bias is according to the Pr.07-23 setting.			
		31	32	33	Torque Bias
		OFF	OFF	OFF	N/A
		OFF	OFF	ON	07-23
		OFF	ON	OFF	07-22
33	Low torque bias	OFF	ON	ON	07-23+07-22
		ON	OFF	OFF	07-21
		ON	OFF	ON	07-21+07-23
		ON	ON	OFF	07-21+07-22
		ON	ON	ON	07-21+07-22+07-23
34~37: R	Reserved				
38	Disable write EEPROM function	When this function is enabled, you can't write into EEPROM.			
39	Torque command direction	When this function is enabled, you can't write into EEPROM.			
40	Enable drive function	When Pr.07-13=2 and analog input is ACI or unipolar AUI , torque command direction is decided by this terminal.			
41	Detection of magnetic contactor	When this function is enabled, the drive function can be executed. This function can be used with multi-function output (setting Pr.02-11~Pr.02-14 to 15) and (Pr.02-31 and Pr.02-32).			
42	Mechanical brake 1	This terminal is used for the feedback signal of magnetic contactor ON/OFF. When drive receives RUN command, the corresponding output terminal (setting 15) will be enabled after Pr.02-31 time. It will check if this function is enabled within the detection time (Pr.02-36). If NOT, the fault of mechanical brake occurs and fault code "MCF" will be displayed.			
43	EPS function (Emergency Power System)	If power is cut during running, the drive will stop when DC bus voltage is less than low voltage level. After power is cut, drive will run by the frequency depend on EPS when EPS is applied and this function is ON .			
44	Mechanical brake 2	This terminal is used for the feedback signal of magnetic contactor ON/OFF. When drive receives RUN command, the corresponding output terminal (setting 15) will be enabled after Pr.02-31 time. It will check if this function is enabled within the detection time (Pr.02-36). If NOT, the fault of mechanical brake occurs and fault code "MCF" will be displayed.			
45~51	Direct docking mode only	Contact Delta for more information.			

II 18 Digital Input Response Time

Control Mode
VF VFPG
SVC FOCPG TQCPG FOCPM
Factory Setting:0.005
Settings 0.001~30.000sec
Ba] This parameter is used for digital input terminal signal delay and confirmation. The delay time is confirmation time to prevent some uncertain interferences that would result in error (except for the counter input) in the input of the digital terminals (FWD, REV and MI1~8). Under this condition, confirmation for this parameter could be improved effectively, but the response time will be somewhat delayed.

Digital Input Operation Direction
Control Mode VF VFPG SVC

FOCPG TQCPG FOCPM
Factory Setting: 0

Settings 0~65535
$\mathbb{1}$ d This parameter is used to set the input signal level and it won't be affected by the SINK/SOURCE status.
[1] Bit0 is for FWD terminal, bit1 is for REV terminal and bit2 to bit9 is for MI1 to MI8.
[】] User can change terminal status by communicating.
For example, MI1 is set to 1 (multi-step speed command 1), MI2 is set to 2 (multi-step speed command 2). Then the forward $+2^{\text {nd }}$ step speed command=1001 (binary) $=9$ (Decimal). Only need to set Pr.02-10=9 by communication and it can forward with $2^{\text {nd }}$ step speed. It doesn't need to wire any multi-function terminal.

bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MI8	MI7	$\mathrm{MI6}$	$\mathrm{MI5}$	$\mathrm{MI4}$	$\mathrm{MI3}$	$\mathrm{MI2}$	$\mathrm{MI1}$	REV	FWD

RI - : Multi-function Output 1: RA, RB, RC (Relay 1)

```
92- %2
```

Multi-function Output 2: MRA, MRB, MRC (Relay 2)

```
#2-:3
Multi-function Output 3: R1A, R12C (Realy 3)
R2 - M4 Multi-function Output 4: R2A, R12C (Realy 4)
ME- 15
Multi-function Output 5: MO1
ME- !E
Multi-function Output 6: MO2
#2-:7
Reserved
CB-18
Reserved
M2 - IS Reserved
#2-2t
Reserved
B2-2 (1)Reserved
02-2]
Reserved
```

Factory Setting:11

Factory Setting:1
Settings Control Mode VF VFPG SVC FOCPG TQCPG FOCPM

0 : No function
1: Operation indication
2: Operation speed attained
3: Desired frequency attained 1 (Pr.02-25, 02-26)
4: Desired frequency attained 2 (Pr.02-27, 02-28)
5: Zero Speed(frequency command
6: Zero speed with stop (frequency command)
7: Over torque (OT1) (Pr.06-05~06-07)
8: Over torque (OT2) (Pr.06-08~06-10)
9: Drive ready
10: User-defined Low-voltage Detection (LV)
11: Malfunction indication
12: Mechanical brake release (Pr.02-29, Pr.02-30)
13: Overheat (Pr.06-14)
14: Brake chopper signal
15: Motor-controlled magnetic contactor output
16: Slip error (oSL)
17: Malfunction indication 1
18: Reserved
19: Brake chopper output error
20: Warning output
21: Over voltage warning
22: Over-current stall prevention warning
23: Over-voltage stall prevention warning
24: Operation mode indication (Pr.00-15 $\neq 0$)

25: Forward command
26: Reverse command
27: Output when current >= Pr.02-33
28: Output when current < Pr.02-33
29: Output when frequency >= Pr.02-34
30: Output when frequency < Pr.02-34
31: Power generation direction and status verify
32: Power generation direction
33: Zero speed (actual output frequency)
34: Zero speed with Stop (actual output frequency)
35: Fault output option 1 (Pr.06-22)
36: Fault output option 2 (Pr.06-23)
37: Fault output option 3 (Pr.06-24)
38: Fault output option 4 (Pr.06-25)
39: Reserved
40: Speed attained (including zero speed)
41: Reserved
42: STO Output Error
43~44: Direct Docking Mode only
45: Reserved
46: Indicator of Retrying while a fault has occurred
47: Direct Docking Mode only

Settings	Functions	Descriptions
0	No Function	No function
1	AC Drive Operational	Active when there is an output from the drive or RUN command is ON.
2	Operation speed attained	Active when the AC motor drive reaches the output frequency setting.
3	Desired Frequency Attained 1 (Pr.02-25, 02-26)	Active when the desired frequency (Pr.02-25, 02-26) is attained.
4	Desired Frequency Attained 2 (Pr.02-27, 02-28)	Active when the desired frequency (Pr.02-27, 02-28) is attained.
5	Zero Speed (frequency command)	Active when frequency command =0. (the drive should be at RUN mode)
6	Zero Speed with Stop (frequency command)	Active when frequency command =0 or stop.

7 \begin{tabular}{l|l|l|}

\hline 7 \& | Over Torque (OT1) |
| :--- |
| (Pr.06-05~06-07) | \& | Active when detecting over-torque. Refer to Pr.06-05 (over-torque |
| :--- |
| detection selection-OT1), Pr.06-06 (over-torque detection |
| level-OT1) and Pr.06-07 (over-torque detection time-OT1). |

\end{tabular}

8	Over Torque (OT2) (Pr.06-08~06-10)	Active when detecting over-torque. Refer to Pr.06-08 (over-torque detection selection-OT2), Pr.06-09 (over-torque detection level-OT2) and Pr.06-10 (over-torque detection time-OT2).
9	Drive Ready	Active when the drive is ON and no abnormality detected.
10	User-defined Low-voltage Detection	Active when the DC Bus voltage is too low. (refer to Pr.06-00 low voltage level)
11	Malfunction Indication	Active when fault occurs (except Lv stop).
12	Mechanical Brake Release (Pr.02-29, Pr.02-30)	When drive runs after Pr.02-29, it will be ON. This function should be used with DC brake and it is recommended to use contact "b" (N.C).
13	Overheat (Pr.06-14)	Active when IGBT or heat sink overheats to prevent OH turn off the drive. (refer to Pr.06-14)
14	Brake Chopper Signal	The output will be activated when the drive needs help braking the load. A smooth deceleration is achieved by using this function. (refer to Pr.07-00)
15	Motor-controlled Magnetic Contactor Output	Active when the setting is set to 15.
16	Slip Error (oSL)	Active when the slip error is detected (by Pr.05-14).
17	Malfunction indication 1	Activate after 10 ms when fault occurs (except Lv stop).
18	Reserved	
19	Brake Chopper Output Error	Active when the brake chopper error is detected
20	Warning Output	Active when the warning is detected.
21	Over-voltage Warning	Active when the over-voltage is detected.
22	Over-current Stall Prevention Warning	Active when the over-current stall prevention is detected.
23	Over-voltage Stall prevention Warning	Active when the over-voltage stall prevention is detected.
24	Operation Mode Indication	Active when the operation command is controlled by external terminal. (Pr.00-15=1) and PU LED on keypad KPVL-CC01 is OFF.
25	Forward Command	Active when the operation direction is forward.
26	Reverse Command	Active when the operation direction is reverse.
27	Output when Current >= Pr.02-33	Active when current is $>=$ Pr.02-33.
28	Output when Current < Pr.02-33	Active when current is < Pr.02-33.
29	Output when frequency >= Pr.02-34	Active when frequency is $>=$ Pr.02-34.
30	Output when Frequency < Pr.02-34	Active when frequency is < Pr.02-34.
31	Power Generation Direction and Status Verify	Activate when power generation direction is verified.

32	Power Generation Direction	Activate when power generation direction is forward run.		
33	Zero Speed (actual output frequency)	Active when the actual output frequency is 0 . (the drive should be at RUN mode)		
34	Zero Speed with Stop (actual output frequency)	Active when the actual output frequency is 0 or Stop. (the drive should be at RUN mode)		
35	Fault output option 1	Active when Pr.06-22 is ON.		
36	Fault output option 2	Active when Pr.06-23 is ON.		
37	Fault output option 3	Active when Pr.06-24 is ON.		
38	Fault output option 4	Active when Pr.06-25 is ON.		
39	Reserved			
40	Speed Attained (including zero speed)	Active when the output frequency reaches frequency setting.		
41	Reserved			
42	STO Output Error	Status of Drive	Status of Safety Output	Setting of Logic Output B is on page 16-6
			Status A (MO=42)	
		Normal	Broken Circuit(Open)	
		STO	Short Circuit(Close)	
		STL1~STL3	Short Circuit(Close)	
43~44	Direct Docking Mode only	Contact Delta for more information		
45	Reserved			
46	Indicator of Retrying while a fault has occurred	Re-attempt to do multiple output while an error has occurred. When finish re-attempting, MO will stop.		
47	Direct Docking Mode only	Contact Delta for more information		

$59-93$
Multi-output Direction
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0
Settings 0~65535
Dal This parameter is bit setting. If the bit is 1 , the multi-function output terminal will be act with opposite direction. For example, if Pr.02-11 is set to 1 and forward bit is 0 , Relay 1 will be ON when the drive is running and OFF when the drive is stop.

Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	MO2	MO1	R2A	R1A	MRA	RA

52-2 5 Serial Start Signal Selection

Control Mode VF VFPG SVC FOCPG
FOCPM
Factory Setting: 0
Settings 0: By FWD/REV signal
1: By Enable signal
[1] This parameter is used to select serial start method of electromagnetic valve.
(1) When choose 0 : by FWD/REV signal, the motor will start to run after the signal of enabling MI=40 is ON .
(1) When choose 1: by Enable signal, the electromagnetic valve, mechanical brake and DC brake will follow parameters' setting to run after FWD/REV and Enable are ON.

[2-35

Control Mode

VF VFPG SVC FOCPG

FOCPM
Factory
Setting:60.00/50.00

Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
PI - The Width of the Desired Frequency Attained 1

Control Mode VF VFPG

SVC FOCPG
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
[3-3
Control Mode

FOCPM
Factory
Setting:60.00/50.00

Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
The Width of the Desired Frequency Attained 2
Control Mode
VF VFPG SVC FOCPG
FOCPM
Factory Setting:2.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
[10] Once the output frequency reaches desired frequency and the corresponding multi-function output terminal is set to 3 or 4 (Pr.02-11~Pr.02-22), this multi-function output terminal will be ON.
I2 - 9 Brake Release Delay Time when Elevator Starts
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.250
Settings 0.000~65.000sec
Brake Engage Delay Time when Elevator Stops
Control Mode
Factory Setting:0.250
Settings 0.000~65.000sec
[1] When the AC motor drive runs after the delay time set at Pr02-29, the corresponding multi-function output
terminal (12: mechanical brake release) will be ON.
[1] When the AC motor drive stops and after Pr.02-30 delay time, the corresponding multi-function output terminal (12: mechanical brake release) will be OFF.
[1] This function needs to co-work with DC brake function.

51 2 I Turn On Delay of Magnetic Contact between Drive and Motor

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.20
Settings $\quad 0.010 \sim 65.000 \mathrm{sec}$.
[1] After running, it is used with setting 40 of multifunction input terminal and settings 15 of multifunction output terminals. When multifunction output terminals is ON, the drive starts output after Pr.02-31 delay time. When drive stops output, multifunction output terminals will release after Pr.02-32 delay time.

13-3 Output Current Level Setting for External Terminals

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: 0
Settings 0~100\%
[.] When output current is $>=$ Pr.02-33, it will activate multi-function output terminal (Pr.02-11 to Pr.02-22 is set to 27).
1 When output current is < Pr.02-33, it will activate multi-function output terminal (Pr.02-11 to Pr.02-22 is set to 28).
58-34
Output Boundary for External Terminals
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.00
Settings $\quad 0.00 \sim \pm 400.00 \mathrm{~Hz}$
[a] When output frequency is $>=02-34$, it will activate the multi-function terminal (Pr.02-11 to Pr.02-22 is set to 29).
[a] When output frequency is $<02-34$, it will activate the multi-function terminal (Pr.02-11 to Pr.02-22 is set to 30).

Detection Time of Mechanical Brake
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.00
Settings 0.00~10.00sec
[1] When mechanical brake function (setting 42 of Pr.02-01~02-08) is not enabled within this setting time, it will display fault code 64 (MBF) mechanical brake error.

5I 9 D Detection Time of Magnetic Contactor

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting:0.00
Settings $0.00 \sim 10.00 \mathrm{sec}$When mechanical brake function (setting 41 of Pr.02-01~02-08) is not enabled within this setting time, it will display fault code 66 (MCF) mechanical brake error.

92-97

Check Torque Output Function

| Control Mode VF VFPG SVC FOCPG TQCPG FOCPM | Factory Setting: 0 | |
| :---: | :---: | :---: | :---: | :--- |
| Settings | 0: Enable | |
| | 1: Disable | |

When the drive receives the operation signal, the drive will check if there is torque output. When this function is enabled, it will release mechanical brake after confirming that there is torque output.

03 Analog Input/ Output Parameters

23-9 Analog Input 1 (AUI1)
Factory Setting:1
193-9: Reserved

Factory Setting: 0
Settings Control Mode vF vFPG svc focpg tQcPg focpm
0 : No function
1: Frequency command (torque limit under TQR control mode)

2: Torque command (torque limit under speed mode)
3: Preload input
4~5: Reserved
6: P.T.C. thermistor input value
7: Positive torque limit
8: Negative torque limit
9: Regenerative torque limit
10: Positive/negative torque limit
$\bigcirc \quad 0$
-

\square

0 O 0
[10 When it is frequency command or TQR speed limit, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is 0 max. output frequency (Pr.01-00)
When it is torque command or torque limit, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is 0 - max. output torque (Pr.07-14).
When it is torque compensation, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0-$ rated torque.

07-19: Source of torque offset
03-00~02: Analog input selections (AUI1/ACI/AUI2)
03-03~05: Analog input bias (AUI1/A CI/AUI2)
03-06~08: AUI1/A CI/AUI2 bias mode

II 9 - In Analog Input Bias 1 (AUI1)

Control Mode VF VFPG

SVC FOCPG TQCPG FOCPM
Factory Setting:0.0
Settings -100.0~100.0\%
[1] It is used to set the corresponding AUI1 voltage of the external analog input 0 .

83-74 Reserved

515 - If Analog Input Bias 1 (AUI2)

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.0

$$
\text { Settings } \quad-100.0 \sim 100.0 \%
$$

Id is used to set the corresponding AUI2 voltage of the external analog input 0 .
ㅁ. The relation between external input voltage/current and setting frequency is equal to $-10 \sim+10 \mathrm{~V}(4-20 \mathrm{~mA})$ corresponds to $0-60 \mathrm{~Hz}$.

II 5 - 5 AUI1 Positive/negative Bias Mode (AUI1)

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0

if I-9? Reserved

19 3 9 Positive/negative Bias Mode (AUI2)

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0
Settings 0: Zero bias
1: Serve bias as the center, lower than bias=bias
2: Serve bias as the center, greater than bias=bias
3: The absolute value of the bias voltage while serving as the center (unipolar)
4: Serve bias as the center (unipolar)
(1) In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1 V to set the operating frequency.

日3-99

Analog Input Gain 1 (AUI1)

FOCPG TQCPG FOCPM Factory Setting:100.0

Control Mode VF VFPG SVC Settings 0.0~500.0\%

193-!

Control Mode
Analog Input Gain 1 (AUI2)
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting:100.0
Settings 0.0~500.0\%
[a] Parameters 03-03 to 03-11 are used when the source of frequency command is the analog voltage/current signal.

Analog Input Delay Time (AUI1)

Control Mode VF

VFPG
SVC
FOCPG TQCPG FOCPM
$0.00 \sim 2.00 \mathrm{sec}$

73-i3 Reserved

ing - 11

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.01
analog Input Delay Time (AUI2)

Settings 0.00~2.00sec
©a] Interferences commonly exist with analog signals, such as those entering AUI, ACI and AUI2. These interferences constantly affect the stability of analog control and using the Input Noise Filter will create a more stable system.
[1] If Pr03-14 is large, the control will be stable, yet the response to the input will be slow. If Pr. 03-14 is small, the control may be unstable, yet the response to the input will fast.

43-15 Reserved

日3-16
 Reserved

Analog Output Selection 1
Analog Output Selection 2
Control Mode
VF
VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: 0
Settings 0: Output frequency (Hz)
1: Frequency command (Hz)
2: Motor speed (RPM)
3: Output current (rms)
4: Output voltage
5: DC Bus Voltage
6: Power factor angle
7: Power factor
8: Output torque
9 : AUI1
10: Reserved
11: AUI2
12: q-axis current
13: q-axis feedback value
14: d-axis voltage
15: d-axis feedback value
16: q-axis voltage
17: d-axis voltage
18: Torque command
19~20: Reserved
21: Power output

73-18
©3-2?
Control Mode
Analog Output Gain 1
Analog Output Gain 2
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting:100.0
Settings 0~200.0\%
IId This parameter is set the corresponding voltage of the analog output 0 .

II - I Analog Output Value in REV Direction 1
If 3 Analog Output Value in REV Direction 2
Control Mode VF VFPG SVC

FOCPG TQCPG FOCPM
Factory Setting: 0
Settings 0: Absolute value in REV direction
1: Output OV in REV direction
2: Enable output voltage in REV direction

Selection for the analog output direction

Analog Input Type (AUI1)
If 9 - 1 Analog Input Type (AUI2)
Control Mode
VF V
FPG SVC FOCPG TQCPG FOCPM
Factory Setting: 0
Settings
0 : Bipolar ($\pm 10 \mathrm{~V}$)
1: Unipolar (0~10V)When setting to 0 and Pr.03-00=1 or 2, AUI can decide the operation direction.
(1)d

When setting to 1 and Pr.03-00=1, the operation direction can be set by FWD/REV terminal.When setting to 1 and Pr.03-00=2, the operation direction can be set by setting 39 of Pr.02-01 to Pr.02-08.

04 Multi-Step Speed Parameters

```
84-98
Zero Step Speed Frequency
1st Step Speed Frequency
54-9
2nd Step Speed Frequency
74-93 3rd Step Speed Frequency
B4-7444th Step Speed Frequency
[7\%-95 5th Step Speed Frequency
64-05
6th Step Speed Frequency
84-77
7th Step Speed Frequency
54-988 8th Step Speed Frequency
[最 9th Step Speed Frequency
~ \(84-18\)
10th Step Speed Frequency
84-i!
11th Step Speed Frequency
RY- 12 th Step Speed Frequency
54-!
13th Step Speed Frequency
㫨- : 14th Step Speed Frequency
```

Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.00
Settings $\quad 0.00 \sim 120.00 \mathrm{~Hz}$

84-:515th Step Speed Frequency

Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
[ad The Multi-Function Input Terminals (refer to Pr.02-01 to 02-08) are used to select one of the AC motor drive Multi-step speeds (including the main speed, in total 16 speeds). The speeds (frequencies) are determined by Pr.04-00 to 04-15 as shown above.

7if - 15 Direct docking mode only

84-99

Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:
Settings Contact Delta for more information

05 IM Parameters

55-9.7 Motor Auto Tuning

Control Mode VF
Factory Setting: 0
Settings 0: No function
1: Rolling test (Rs, Rr, Lm, Lx, no-load current)
2: Static Test
(1) Starting auto tuning by pressing RUN key and it will write the measure value into Pr.05-05 to Pr.05-09 (Rs, Rr, Lm, Lx, no-load current).
[a] The steps to AUTO-Tuning are: (when setting to 1)

1. Make sure that all the parameters are set to factory settings and the motor wiring is correct.
2. Make sure the motor has no-load before executing auto-tuning and the shaft is not connected to any belt or gear motor. It is recommended to set to 2 if the motor can't separate from the load.
3. Fill in Pr.01-02, Pr.01-01, Pr.05-01, Pr.05-02, Pr.05-03 and Pr.05-04 with correct values. Refer to motor capacity to set accel./decel. time.
4. When Pr.05-00 is set to 1, the AC motor drive will execute auto-tuning immediately after receiving a "RUN" command. (NOTE: the motor will run!)
5. After executing, please check if all values are filled in Pr.05-05 to Pr.05-09.
6. Equivalent circuit

※ If Pr05-00 is set to <2: Static Test>, the input of Pr05-05 is required.

NOTE

1. In torque/vector control mode, it is not recommended to have motors run in parallel.
2. It is not recommended to use torque/vector control mode if motor rated power exceeds the rated power of the AC motor drive.
3. The no-load current is usually $20 \sim 50 \% X$ rated current.
4. The rated speed can't be larger or equal to 120f/p. (f: output frequency Pr.01-01, p: Number of Motor Poles Pr.05-04)
5. After the tuning, user needs to activate the drive again to make it operate if the source command of Auto-tuning comes from external terminal,

Control Mode VF VFPG SVC FOCPG TQCPG
Unit: Amp
Factory Setting:\#.\#\#
Settings (40~120\%) *00-01 Amps
[1] This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is $90 \% \mathrm{X}$ rated current.
Example: if the rated current for $7.5 \mathrm{hp}(5.5 \mathrm{~kW})$ models is 25 A and the factory setting is 22.5 A . In this way, the current range will be from 10A ($25^{*} 40 \%$) to 30 A ($25^{* 120 \%) \text {). }}$
[1] As shown in the table below, the factory settings vary according to the different output in HP and in KW of motor drives.

	Motor drive's output (HP)	5	7.5	10	15	20	25	30	40	50	60	75	100
	Motor drive'soutput (KW)	4	5.5	7.5	11	15	18.5	22	30	37	45	55	75
230 V	Full Load Current of Motor (A) Factory Setting	16.36	19.64	24.54	36.82	47.46	63	71.18	108	131.72			
460 V	Full Load Current of Motor(A) Factory Setting	9.41	10.64	13.91	18.82	24.54	31.1	36.82	47.46	65.46	81.82	104.72	135

75-93
 Rated Power of Motor

Control Mode
SVC FOCPG TQCPG
Factory Setting: \#.\#\#

$$
\text { Settings } \quad 0.00 \sim 655.35 \mathrm{~kW}
$$

(1) It is used to set rated power of the motor. The factory setting is the power of the drive.
[75-93 Rated Speed of Motor (rpm)
Control Mode
VFPG SVC FOCPG TQCPG
Factory Setting:1710
Settings 0~65535
(1) It is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.

I5 - 94 Number of Motor Poles

Control Mode VF VFPG SVC FOCPG TQCPG
Factory Setting:4

$$
\text { Settings } \quad 2 \sim 48
$$

(1) It is used to set the number of motor poles (must be an even number).

75 - 75 No-load Current of Motor
Control Mode VFPG SVC FOCPG TQCPG
Unit: Amp
Factory Setting:\#.\#\#
Settings 0~100\%
In The factory setting is $40 \% \mathrm{X}$ rated current.
[1] As shown in the table below, the factory settings vary according to the different output in HP and in KW of motor drives.

	Motor drive's output (HP)	5	7.5	10	15	20	25	30	40	50	60	75	100
	Motor drive's output (KW)	4	5.5	7.5	11	15	18.5	22	30	37	45	55	75
230 V	Current of Motor w/o load (A) Factory Setting	5.73	6.85	8.5	12.56	15.97	20.78	23.22	33.51	39.52			
460 V	Current of Motor w/o load (A) Factory Setting	3.29	3.71	4.81	6.43	8.26	10.28	11.99	15	19.64	24.55	31.42	40.5

65-85 65-47

Rs of Motor
Rr of Motor
Control Mode
SVC FOCPG TQCPG
Factory Setting:0.000
Settings $0.000 \sim 65.535 \Omega$

55-9 5 B of Motor
 55-98

Control Mode
SVC FOCPG TQCPG
Factory Setting:0.0
Settings $\quad 0.0 \sim 6553.5 \mathrm{mH}$

75-17 Torque Compensation Time Constant

Control Mode
SVC
Factory Setting:0.020
Settings $0.001 \sim 10.000 \mathrm{sec}$

75 - ! Slip Compensation Time Constant

Control Mode
SVC
Factory Setting:0.100
Settings 0.001~10.000sec
$\mathbb{1}$) Setting Pr.05-10 and Pr.05-11 change the response time for the compensation.
[a] When Pr.05-10 and Pr.05-11 are set to 10 seconds, its response time for the compensation will be the longest. But if the settings are too short, unstable system may occur.

55- TE Torque Compensation Gain

Control Mode VF VFPG Factory Setting: 0
Settings 0~10
[a] This parameter may be set so that the AC motor drive will increase its voltage output to obtain a higher torque.

75-! Slip Compensation Gain
 Control Mode
 SVC

Factory Setting:0.00
Settings 0.00~10.00When the asynchronous motor is driven by the drive, the load and slip will be increased. This parameter can be used to correct frequency and lower the slip to make the motor can run near the synchronous speed under rated current. When the output current is larger than the motor no-load current, the drive will compensate the frequency by $\operatorname{Pr} .05-13$ setting. If the actual speed is slower than expectation, please increase the setting and vice versa.
Lel It is only valid in SVC mode.
[55-19
Slip Deviation Level
Control Mode
Settings 0~1000\%
0: Disable
(65-15
Detection time of Slip Deviation
Control Mode
VFPG SVC FOCPG
Factory Setting:1.0
Settings 0.0~10.0sec

55-15

Over Slip Treatment
Control Mode
VFPG SVC FOCPG
Factory Setting: 0
Settings 0: Warn and keep operation
1: Fault and ramp to stop
2: Fault and coast to stop
[1] Pr.05-14 to Pr.05-16 are used to set allowable slip level/time and over slip treatment when the drive is running.

75-: 7 Hunting Gain

Control Mode VF VFPG SVC
Settings 0~10000
0 : Disable
1 The motor will have current wave motion in some specific area. It can improve this situation by setting this parameter. (When it is high frequency or run with PG, Pr.05-17 can be set to 0 . when the current wave motion happens in the low frequency, please increase Pr.05-17.)

85-18

Accumulative Motor Operation Time (Min.)
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:00
Settings 00~1439 minutes

55-19 Accumulative Motor Operation Time (Day)
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:00
Settings 00~65535 days
10 Pr. 05-18 and Pr.05-19 are used to record the motor operation time. They can be cleared by setting to 00 and time which is less than 60 seconds will not be recorded.

75 5 2 2 Accumulative Drive Power-on Time (day)
Control Mode
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting:00
Settings 00~65535 days

55-5 Slip compensation gain \% (electricity generating mode)
Control Mode
VF
SVC
Factory Setting: 0.0
Settings 0.0~100.0\%

- $85-24$

Slip compensation gain \% (electric mode)
Control Mode VF
SVC
Factory Setting: 0.0
Settings 0.0~100.0\%When in VF mode, it is NOT required to set Pr05-13. To satisfy the end user's demand on different compensation gain of electricity generating mode and electric mode, simply set up Pr05-23 and Pr05-24.When in SVC mode, it is required to set Pr05-13. Then to satisfy the end user's demand on different compensation gain of electricity generating mode and electric mode, simply set up Pr05-23 and Pr05-24.

06 Protection Parameters

75-97 Low Voltage Level

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:180.0/360.0
Settings 230V series: 160.0~220.0V
460V series: 320.0~440.0V
(1) It is used to set the Lv level.

75-7 : Phase-loss Protection

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:2
Settings 0: Warn and keep operation
1: Fault and ramp to stop
2: Fault and coast to stop
14 It is used to set the phase-loss treatment. The phase-loss will effect driver's control characteristic and life

75-98 Over-Current Stall Prevention during Acceleration

Control Mode VF VFPG SVC
Factory Setting:00
Settings 00: Disable
00~250\% (rated current of the motor drive)
$[\mathbb{C l}$ During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr.06-02 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.

55-9 Over-current Stall Prevention during Operation

Control Mode VF VFPG SVC Factory Setting:00
Settings 00: Disable
00~250\% (rated current of the motor drive)
[a] If the output current exceeds the setting specified in Pr.06-03 when the drive is operating, the drive will decrease its output frequency by Pr.06-04 setting to prevent the motor stall. If the output current is lower than the setting specified in Pr.06-03, the drive will accelerate (by Pr.06-04) again to catch up with the set frequency command value.

over-current stall prevention during operation
176-74 Accel. /Decel. Time Selection of Stall Prevention at constant speed
Control Mode VF VFPG SVC Factory Setting: 0
Settings 0: current accel/decel time
1: the 1st accel/decel time
2: the 2nd accel/decel time
3: the 3rd accel/decel time
4: the 4th accel/decel time
5: auto accel/decel time
[1] It is used to set the accel. /decel. time selection when stall prevention occurs at constant speed.

56-75 Over-torque Detection Selection (OT1)

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0
Settings 0: Over-Torque detection disabled.
1: Over-torque detection during constant speed operation, continue to operate after detection

2: Over-torque detection during constant speed operation, stop operation after detection

3: Over-torque detection during operation, continue to operate after detection
4: Over-torque detection during operation, stop operation after detection

Over－torque Detection Level（OT1）
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting：150
Settings 10～250\％（rated current of the motor drive）
Over－torque Detection Time（OT1）
Control Mode
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting：0．1
Settings 0．1～60．0sec

96－98

Over－torque Detection Selection（OT2）
Control Mode
VF
VFPG SVC FOCPG TQCPG FOCPM
Factory Setting： 0
Settings 0：Over－Torque detection disabled．
1：Over－torque detection during constant speed operation，continue to operate after detection

2：Over－torque detection during constant speed operation，stop operation after detection

3：Over－torque detection during operation，continue to operate after detection
4：Over－torque detection during operation，stop operation after detection

日6－99

Over－torque Detection Level（OT2）
Control Mode VF

VFPG SVC FOCPG TQCPG FOCPM
Factory Setting：150
Settings 10～250\％（rated current of the motor drive）

日最－17
Over－torque Detection Time（OT2）
Control Mode

VF VFPG SVC FOCPG TQCPG FOCPM
Settings 0．1～60．0sec

Factory Setting：0．1

Da］Pr．06－05 and Pr．06－08 determine the operation mode of the drive after the over－torque is detected via the following method：if the output current exceeds the over－torque detection level（Pr．06－06）and also exceeds the Pr．06－07 Over－Torque Detection Time，the fault code＂OT1／OT2＂is displayed．If a Multi－Functional Output Terminal is to over－torque detection，the output is on．Please refer to Pr．02－11～02－22 for details．

current

50－：：Current Limit

Control Mode
FOCPG TQCPG FOCPM
Factory Setting：200
Settings 0～250\％（rated current of the motor drive）
（1）It is used to set the current limit．

186-12 Electronic Thermal Relay Selection

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:2
Settings 0 : Inverter motor
1: Standard motor
2: Disabled
It it is used to prevent self-cooled motor overheats under low speed. User can use electrical thermal relay to limit driver's output power.

56- 13 Electronic Thermal Characteristic

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:60.0
Settings $\quad 30.0 \sim 600.0 \mathrm{sec}$
$\mathbb{C D}$ The parameter is set by the output frequency, current and operation time of the drive for activating the $I^{2} t$ electronic thermal protection function. The function will be activated for the 150% * setting current for the setting of Pr.06-13.

75-: Heat Sink Over-heat (OH) Warning

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:90.0
Settings $\quad 0.0 \sim 110.0^{\circ} \mathrm{C}$

75- : 5 Stall Prevention Limit Level

Control Mode VF VFPG SVC
Factory Setting:50
Settings 0~100\% (Refer to Pr06-02, Pr06-03)
1 When the operating frequency is larger than Pr.01-01, Pr06-02=150\%, Pr. 06-03=100\% and Pr. 06-15=80\%:
Stall Prevention Level during acceleration $=06-02 \times 06-15=150 \times 80 \%=120 \%$.
Stall Prevention Level at constant speed= 06-03x06-15=100x80\%=80\%.
Stall Prevention Level


```
186- 16 Present Fault Record
75-!7 Second Most Recent Fault Record
I6-18 Third Most Recent Fault Record
I6-:3 Fourth Recent Fault Record
ME-3昷 Fifth Most Recent Fault Record
ME-3:Sixth Most Recent Fault Record
```

Control mode	VF	VFPG	SVC FOCPG TQCPG FOCPM	Factory setting: 0
	Readings	0	No fault	
		1	Over-current during acceleration (ocA)	
		2	Over-current during deceleration (ocd)	
		3	Over-current during constant speed (ocn)	
		4	Ground fault (GFF)	
		5	IGBT short-circuit (occ)	
		6	Over-current at stop (ocS)	
		7	Over-voltage during acceleration (ovA)	
		8	Over-voltage during deceleration (ovd)	
		9	Over-voltage during constant speed (ovn)	
		10	Over-voltage at stop (ovS)	
		11	Low-voltage during acceleration (LvA)	
		12	Low-voltage during deceleration (Lvd)	
		13	Low-voltage during constant speed (Lvn)	
		14	Low-voltage at stop (LvS)	
		15	Input phase loss (PHL)	
		16	IGBT over-heat (0H1)	
		17	Bulk capacitor over-heat (oH2)	
		18	Abnormal IGBT temperature detected (tH1o)	
		19	Abnormal bulk capacitor temperature detected (tH2o)	
		20	Unusual cooling fan operation (FAn)	
		21	Over-load (oL) (150\%; 1 minute, motor drive overloaded)	
		22	Motor over-loaded (EoL1)	
		23	Reserved	
		24	Motor PTC overheat (oH3)	
		25	Reserved	
		26	Over-torque 1 (ot1)	
		27	Over-torque 1 (ot2)	
		28	Reserved	
		29	Reserved	
		30	Memory write-in error (cF1)	
		31	Memory read-out error (cF2)	
		32	Isum current detection error (cd0)	
		33	U-phase current detection error (cd1)	
		34	V-phase current detection error (cd2)	
		35	W-phase current detection error (cd3)	
		36	cc current clamp hardware error (HdO)	

37

57 Communication being written to a read-only address (cE04)
58 Modbus transmission time-out (cE10)
59 Keypad transmission time-out (cP10)
60 Brake chopper error (BF)
61-63 Reserved
64 Mechanical brake feedback error (MBF)
65 PGF5 hardware error
66 Magnetic contactor error (MCF)
67 Output phase loss (MPHL)
68 CAN Bus disconnected
69 Reserved
70 Reserved
71 Reserved
72 Safety torque loss (STL1)
73 PGcd hardware error
74 PG absolute signal error (PGHL)
75 PG Z phase signal loss (PGAF)
76 Safety torque output stops(STO)
77 Safety torque loss 2 (STL2)
78 Safety torque loss 3 (STL3)

ILd It will record when the fault occurs and force stopping. For the Lv, it will record when it is operation, or it will warn without record.
[1] The definition of codes \#69~\#71 have been modified in v1.04. See Ch14 for more information

ILd It is used with the settings 35~38 of Pr.02-11~02-22 (Multi-function Output). The fault output selection 1~4 corresponds to Bit 0~3.
[1] This parameter provides two setting methods for the fault output. Setting 0 : it is set by the settings of Pr.06-22~Pr.06-25. Setting 1: it is set by the binary setting. Refer to the following example for details. Example:
Assume that
Pr.02-13 (Multi-function Output 3 R1A (Relay3)) is set to 35 Fault output option 1 (Pr.06-22).
Pr.02-14 (Multi-function Output 4 R2A (Realy4)) is set to 36 Fault output option 2 (Pr.06-23).
Pr.02-15 (Multi-function Output 5 (MO1)) is set to 37 Fault output option 3 (Pr.06-24).
Pr.02-16 (Multi-function Output 6 (MO2)) is set to 38 Fault output option 4 (Pr.06-25).
Assume that external faults output with the following signal: $R 1 A=1, R 2 A=1, M O 1=0$ and $M O 2=1$. The corresponding Bit 3~0 is 1011.

Bit 3	Bit 2	Bit 1	Bit 0	Fault code
-	-	-	-	0: No fault
0	0	0	1	1: Over-current during acceleration (ocA)
				2: Over-current during deceleration (ocd)
				3: Over-current during constant speed (ocn)
				4: Ground fault (GFF)
				5: IGBT short-circuit (occ)
				6: Over-curent at stop (ocS)
0	0	1	0	7: Over-voltage during acceleration (ovA)
				8: Over-voltage during deceleration (ovd)
				9: Over-voltage during constant speed (ovn)
				10: Over-voltage at stop (ovS)
0	0	1	1	11: Low-voltage during acceleration (LvA)
				12: Low-voltage during deceleration (Lvd)
				13: Low-voltage during constant speed (Lvn)
				14: Low-voltage at stop (LvS)
				15: Input phase loss (PHL)
0	1	0	0	16: IGBT over-heat (oH1)
				17: Bulk capacitor over-heat (oH2)
				18: Abnormal IGBT temperature detected (tH1o)
				19: Abnormal bulk capacitor temperature detected (tH2o)
1	0	0	0	20: Unusual cooling fan operation (FAn)
0	1	0	1	21: Over-load (oL) (150\% 1 minute, motor drive overloaded)
0	1	1	0	22: Motor over-load (EoL1)
				24: Motor PTC overheat (oH3)
0	1	1	1	26: Over-torque 1 (ot1)
				27: Over-torque 1 (ot2)
1	0	0	0	30: Memory write-in error (cF1)
				31: Memory read-out error (cF2)
				32: Isum current detection error (cd0)
				33: U-phase current detection error (cd1)
				34: V-phase current detection error (cd2)
				35: W-phase current detection error (cd3)
				36: cc (current clamp) hardware error (Hd0)
				37: oc (over-current) hardware error (Hd1)
				38: ov (over-voltage) hardware error (Hd2)
				39: GFF (ground fault) hardware error (Hd3)
1	0	0	1	40: Auto tuning error on motor's parameter (AUE)

Bit 3	Bit 2	Bit 1	Bit 0	Fault code
1	0	1	0	41: Reserved
				42: PG feedback error (PGF1)
				43: PG feedback loss (PGF2)
0	1	1	1	44: PG feedback stall (PGF3)
1	0	1	0	45: PG slip error (PGF4)
				46: Reserved
				47: Reserved
				48: Reserved
1	0	1	1	49: External fault input (EF)
				50: Emergency stop by external termnals(EF1)
1	0	0	1	52: Password error after three attempts (Pcod)
1	1	0	0	54: Illegal communication command (cE01)
				55: Illegal communication address (cE02)
				56: Communication data length error (cE03)
				57: Communication being written to a read-only address (cE04)
				58: Modbus transmission time-out (cE10)
				59: Keypad transmission time-out (cP10)
1	0	0	0	60: Brake chopper error (BF)
1	0	1	1	63: Reserved
				64: Mechanical brake feedback error (MBF)
1	0	0	0	65: PGF5 hardware error
1	0	1	1	66: Magnetic contactor error (MCF)
1	0	1	1	67: Output phase loss (MPHL)
1	1	0	1	68: CAN Bus disconnected (CANF)
1	1	1	0	69: Reserved
1	1	1	0	70: Reserved
1	1	1	0	71: Reserved
1	1	1	0	72: Safety torque loss (STL1)

Fault Output Option 1
Fault Output Option 2
Fault Output Option 3
Fault Output Option 4
Control Mode
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: 0
Settings $\quad 0 \sim 6553 \mathrm{sec}$ (refer to bit table for fault code)
11 These parameters can be used with multi-function output (set Pr.02-11 to Pr.02-22 to 35-38) for the specific requirement. When a fault occurs, the corresponding terminals will be activated (It needs to convert binary value to decimal value to fill in Pr.06-22 to Pr.06-25).

Fault code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault							
1: Over-current during acceleration (ocA)	-						
2: Over-current during deceleration (ocd)	-						
3: Over-current during constant speed (ocn)	-						
4: Ground fault (GFF)						-	
5: IGBT short-circuit (occ)	-						
6: Over-curent at stop (ocS)	-						
7: Over-voltage during acceleration (ovA)		\bullet					
8: Over-voltage during deceleration (ovd)		\bigcirc					
9: Over-voltage during constant speed (ovn)		-					
10: Over-voltage at stop (ovS)		\bullet					
11: Low-voltage during acceleration (LvA)		-					
12: Low-voltage during deceleration (Lvd)		-					
13: Low-voltage during constant speed (Lvn)		\bigcirc					
14: Low-voltage at stop (LvS)		-					
15: Input phase loss (PHL)						\bullet	
16: IGBT over-heat (oH1)			\bullet				
17: Bulk capacitor over-heat (oH2)			\bullet				
18: Abnormal IGBT temperature detected (tH1o)			\bullet				
19: Abnormal bulk capacitor temperature detected (tH2o)			\bullet				
20: Unusual cooling fan operation (FAn)						\bullet	
21: Over-load (oL) (150\% 1 minute, motor drive overloaded)			\bullet				
22: Motor over-load (EoL1)			-				
23: Reserved							
24: Motor PTC overheat (oH3)			\bullet				
25: Reserved							

Ch12 Description of Parameter Settings

Fault code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
26: Over-torque 1 (ot1)			\bullet				
27: Over-torque 1 (ot2)			-				
28: Reserved							
29: Reserved							
30: Memory write-in error (cF1)				-			
31: Memory read-out error (CF2)				\bullet			
32: Isum current detection error (cd0)				-			
33: U-phase current detection error (cd1)				-			
34: V-phase current detection error (cd2)				-			
35: W-phase current detection error (cd3)				-			
36: cc (current clamp) hardware error (Hd0)				-			
37: oc (over-current) hardware error (Hd1)				-			
38: ov (over-voltage) hardware error (Hd2)				-			
39: GFF (ground fault) hardware error (Hd3)				-			
40: Auto tuning error on motor's parameter (AUE)				\bullet			
41: Reserved					-		
42: PG feedback error (PGF1)					\bullet		
43: PG feedback loss (PGF2)					\bullet		
44: PG feedback stall (PGF3)					\bullet		
45: PG slip error (PGF4)					-		
46: Reserved					-		
47: Reserved						\bigcirc	
48: Reserved						-	
49: External fault input (EF)						\bullet	
50: Emergency stop by external termnals(EF1)						\bullet	
51: Reserved							
52: Password error after three attempts (Pcod)				-			
53: Reserved							
54: Illegal communication command (cE01)							\bullet
55: Illegal communication address (cE02)							\bullet
56: Communication data length error (CE03)							\bullet
5r: Communication being writen to a read-only address (cE04)							-
58: Modbus transmission time-out (cE10)							-
59: Keypad transmission time-out (cP10)							\bigcirc
60: Brake chopper error (BF)						-	
61-62: Reserved							
63: Reserved				-			

Fault code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
64: Mechanical brake feedback error (MBF)							
65: PGF5 hardware error							
66: Magnetic contactor error (MCF)							
67: Output phase loss (MPHL)							
68: CAN Bus disconnected (CANF) 69: Reserved 70: Reserved							
71: Reserved							
72: Safety torque loss (STL1)							

18-5 PTC (Positive Temperature Coefficient) Detection Selection

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM

Factory Setting: 0
Settings 0 : Warn and keep operating
1: Fault and ramp to stop
10 This parameter is to set the treatment after detecting PTC.

195-27PTC Level

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:50.0
Settings 0.0~100.0\%
This parameter is to set the PTC level. The corresponding value of 100% PTC level is the max. analog input value

50-3 PTC Filter Time for PTC Detection

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.20
\qquad

Voltage of Emergency Power
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:24.0/48.0
Settings 24.0~375.0Vdc
48.0~750.0Vdc
[a] This parameter needs to work with setting \#43 <EPS function> of Pr02-01~Pr02-08<Multi-function input command>.
19-3 f Phase Loss Detection of Drive Output at Start-Up(MPHL)
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0
Settings 0: Disable
1: Enable
(1) When it is set to 1 , it will auto detect if the connection between the drive and motor is normal whenever the drive runs. If errors occur to the connection between the drive and the motor, the drive will display fault code " 67 " to indicate motor output phase loss.

Accumulative Drive Power-on Time at the First Fault (min.)
Accumulative Drive Power-on Time at the Second Fault (min.)
Accumulative Drive Power-on Time at the Third Fault (min.)
Accumulative Drive Power-on Time at the Fourth Fault (min.)
Accumulative Drive Power-on Time at the Fifth Fault (min.)
Accumulative Drive Power-on Time at the Sixth Fault (min.)
Control Mode VF VFPG SVC FOCPG TQCPG

Factory Setting:00

[^2]
56-45 Fault and Warning handling methods

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0002h

Settings Bit0 $=0$: Display Lv fault and coast to stop
Nit0 = 1: Display Lv warn and coast to stop
Bit1= 0 : Fan lock, fault and coast to stop
Bit1 = 1: Fan lock, warn and coast to stop
Bit2 = 0: software GFF protection enabled
Bit2 = 1: software GFF protection disabled

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: 0
Settings $0 \quad$ Operate by current command
1 Operate by the direction of power generating mode
2 After determining the direction of power generating, the host computer sends the operating direction command. (When at STOP mode determine the direction of power generating mode $(\mathrm{MO}=32)$ but do not retain the direction of the power generating.)

3 After determining the direction of power generating, the host computer send the operating direction command. (When at STOP mode, determine the direction of power generating mode ($\mathrm{MO}=32$) and retain the direction of the power generating.)
[1] Pr.06-46 is enabled when the external terminal is detecting for the emergency power (EPS).
When Pr.06-46 is set to 1 and a forward/reverse run command is given, the drive will begin to detect for the elevator loading and operates in the power regeneration direction (the motor is in power generating status). The drive will use and operate in the direction that was detected as its power regeneration direction. The drive will not operate in user command direction for safety purpose, to prevent voltage drop of emergency power (EPS).
[】] VF and SVC control mode: within the time setting of Pr.06-47, the drive detects the elevator loading status by performing forward/reverse run. Then the elevator operates in power regeneration direction (the motor id in power generating status). Refer to the diagram below for the Auto-Detection Time Graph.

A 02-31: Turn On Delay of Magnetic Contactor between Drive and Motor
B 02-29: Brake Release Delay Time when Elevator Starts
C 07-03: DC Brake Activation Time
D 06-47: Power Generation Direction Searching Time

E 02-30: Brake Engage Delay Time when Elevator Stops

F 07-04: Require DC Brake Time to Stop
G 02-32: Turn Off Delay of Magnetic Contactor between Drive and Motor

Auto-detection Time Graph

[a] FOCPG/PM Control Mode: within the time setting of Pr.06-47, the drive maintains at zero-speed and it is able to determine the elevator loading without performing forward/reverse run. Then the elevator operates in power regeneration direction (the motor is in power generating status). Refer to the diagram below for the Auto-Detection Time Graph.

Factory Setting:1.0

EE-48

Power Capacity of Emergency Power (EPS)
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.0 Settings $0.0 \sim 100.0$ kVA
[al When using emergency power (EPS), user must input the required power capacity for the emergency power and then the AC drive will calculate the acceptable elevator speed (Pr.06-44) by following equation. \square

$$
\begin{aligned}
& V_{\text {eps_max }}=\frac{06-48 \times 0.5}{\sqrt{3} \times I_{\text {motor_rated }}} \\
& f_{\text {eps_limit }}=\frac{V_{\text {eps_max }} \times 01-01 \times 0.5}{01-02} \times 2 \text { (Induction Motor)/ } 08-01 \text { (PM Motor) }
\end{aligned}
$$

m When Frequency Command $f_{\text {EPs, }}$, the operation speed of emergency power (EPS) is $f_{\text {EPS }}$.
When Frequency Command $\leq f_{\text {EPS }}$, the operation speed of emergency power (EPS) is set by current frequency command.

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0
Settings 0: STO alarm Latch
1: STO alarm no Latch
2: STO Latch (Warn and record running commands when stop)
3: STO No Latch (Warn and record running commands when stop)
(al When Pr06-49=0, STO alarm is latched which means once the cause of the alarm is cleared, a Reset command is required to clear the STO alarm.
(1) When Pr06-49=1, STO alarm is NOT latched which means once the cause of the alarm is cleared, the STO alarm will stop automatically.
When in STL1~STL3 mode, STO alarm is latched and Pr06-49 cannot be set.

Settings
0: Output
1: NO output
[1]
To determine if to display fault indication when the following faults have occurred:
7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage during constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage during constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Input Phase loss (PHL)
[1] Two MO terminals are affected by this parameters and should be set up as
$\mathrm{MO}=10$: Low voltage waning (LV)
$M O=11$: Fault Indication

75-5: Number of times of retrying after fault

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0

Settings 0~10 times
$\mathbb{1}]$ To determine number of times to retry when the following faults have occurred:
7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage during constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage during constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Input Phase loss (PHL)
1 After every reattempt, the available number of times to retry will automatically be deducted as displayed on the keypad
[1] About number of time to reset

1. Reset the fault manually
2. After running normally for 10 minutes, the motor drive will be back to the prior setting.
3. The motor drive will be powered-down and powered-up again.

15-52 Time interval between retrying

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0
Settings $0.5 \sim 600.0 \mathrm{sec}$.
1 To determine time interval between retrying when the following faults have occurred:
7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage during constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage during constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Input Phase loss (PHL)

日是-53
Control Mode

Frequency command when the most recent fault has occurred VF VFPG SVC FOCPG TQCPG FOCPM

Factory Setting: 0.00
Settings $\quad 0.00 \sim 655.35 \mathrm{~Hz}$

E6-54

Control Mode
Output frequency when the most recent fault has occurred VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0.00

Settings $\quad 0.00 \sim 655.35 \mathrm{~Hz}$

66-55

Output current when the most recent fault has occurred
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting : 0.00
Settings $0.00 \sim 655.35 \mathrm{Amps}$

Output current when the most recent fault has occurred
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting : 0.00
Settings $\quad 0.00 \sim 655.35 \mathrm{~Hz}$

If 5 ? Output voltage when the most recent fault has occurred
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Settings 0.00~6553.5V

IE - 5 DC bus voltage when the most recent fault has occurred
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0.0
Settings 0.00~6553.5V

75-5 5 Output power when the most recent fault has occurred
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Settings $\quad 0.00 \sim 6553.5 \mathrm{~kW}$
Output torque when the most recent fault has occurred
Control Mode
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: 0.0
-

If - E IGBT's temperature when the most recent fault has occurred
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0.0
Settings $\quad-3276.8 \sim 3276.7^{\circ} \mathrm{C}$

TE-6 Multi-input terminals' status when the most recent fault has occurred

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0000h
Settings 0000h~FFFFh

15-63 Multi-output terminals' status when the most recent fault has occurred

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0000h
Settings 0000h~FFFFh
日6-69
Motor drive's status when the most recent fault has occurred
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: 0000h

07Special Parameters

B7-9.7 Brake Chopper Level

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting:380.0/760.0
Settings 230 V series: $350.0 \sim 450.0 \mathrm{Vdc}$
460Vseries: 700.0~900.0Vdc
©d This parameter sets the DC-bus voltage at which the brake chopper is activated.

77-9: Reserved

17-9 DC Brake Current Level

Control Mode VF VFPG SVC
Factory Setting: 0
Settings 0~100\% (rated current of the motor drive)
1 This parameter sets the level of DC Brake Current output to the motor during start-up and stopping. When setting DC Brake Current, the Rated Current (Pr.00-01) is regarded as 100\%. It is recommended to start with a low DC Brake Current Level and then increase until proper holding torque has been attained.
[a] When it is in FOCPG/TQCPG/FOCPM mode, it can enable DC brake function by setting to any value.

Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.7
Settings $0.0 \sim 60.0 \mathrm{sec}$
(1) This parameter sets the duration of DC Brake current is supplied to motor when activating the drive.

If 7 - If DC Brake Stopping Time

Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.7
Settings 0.0~60.0sec
1 This parameter sets the duration of DC Brake current is supplied to motor when stopping the drive.

197-95 Start-Point for DC Brake

Control Mode VF VFPG SVC FOCPG Factory Setting:0.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
1 Th This parameter determines the frequency when DC Brake will begin during deceleration. When the setting is less than start frequency (Pr.01-09), start-point for DC brake will begin from the min. frequency.

Output frequency

Run/Stop
ON
OFF
Time
DC Brake Time

DC Brake Proportional Gain
Control Mode
VF VFPG SVC
Factory Setting:50
Settings 1~500
It is used to set the output voltage gain when DC brakes.

79-97 Dwell Time at Accel.
Control Mode VF VFPG SVC
Settings $0.00 \sim 600.00 \mathrm{sec}$

Control Mode
VF VFPG SVC FOCPG
FOCPM
Factory Setting:0.00
Settings 0.00~600.00sec

79-98 Dwell Frequency at Accel

Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.00 Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
77-19 Dwell Frequency at Decel.
Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
(1) In the heavy load situation, Dwell can make stable output frequency temporarily.
[1] Pr.07-07 to Pr.07-10 are for heavy load to prevent OV or OC occurs.

Frequency

Dwell at accel./decel.

Cooling Fan Control
Control Mode VF VFPG SV
Settings 0: Fan always ON
1: 1 minute after AC motor drive stops, cooling fan will be OFF
2: AC motor drive runs and fan ON, AC motor drive stops and cooling fan OFF
3: Cooling fan ON to run when preliminary heat sink temperature attained
4: Cooling fan always OFF
10] This parameter is used for the fan control.
[1] When setting to 3 , fan will start to run until temperature is less than $40^{\circ} \mathrm{C}$ if temperature exceeds $40^{\circ} \mathrm{C}$.

Settings $\quad-150.0$ to 150.0% (Pr. 07-14 setting=100\%)
(1) This parameter is torque command. When Pr.07-14 is 250% and Pr.07-12 is 100%, the actual torque command $=250 \times 100 \% \times$ motor rated torque.

If - ? Soruce of Torque Command

TQCPG

Factory Setting:2
Settings
0: KPC-CC01 Digital keypad
1: RS485 serial communication
2: Analog signal (Pr.03-00)
1 Da This parameter is torque command source and the torque command is in Pr.07-12
If 7 - 14 Maximum Torque Command
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:100
Settings $\quad 0 \sim 300 \%$ (rated torque of the motor drive)
[1] This parameter is for the max. torque command (motor rated torque is 100%).
[1]
I7 - 5 Filter Time of Torque Command
Control Mode
TQCPG
Factory Setting:0.000
Settings $0.000 \sim 1.000 \mathrm{sec}$
[1] When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control maybe unstable. User can adjust the setting by the control and response situation.

I7- IE Speed Limit Selection

Control Mode

TQCPG

Factory Setting: 0
Settings 0: By Pr.07-17 and Pr.07-18
1: Frequency command source (Pr.00-14)

07-18 07-17
Pr.07-16=0
Running/opposite running direction are limited by Pr.07-17 and Pr.07-18.

07-18 00-14
07-16=1
When it is forward running, running direction is limited by Pr.00-14 opposite running direction is limited by Pr.07-18.

07-16=1
When it is reverse running, running direction is limited by Pr.07-17 opposite running direction is limited by Pr.00-14.

Control Mode
Settings 0~120\%
Settings 0~120\%

79-18 Torque Mode - Speed Limit
Control Mode

TQCPG

Settings 0~120\%
(1) These parameters are used in the torque mode to limit the running direction and opposite direction. (Pr.01-00 max. output frequency=100\%)

717-19 Source of Torque Offset

Control Mode
SVC FOCPG TQCPG FOCPM
Factory Setting: 0
Settings 0: Disable
1: Analog input (Pr.03-00)
2: Torque offset setting (Pr.07-20)
3: Control by external terminal (by Pr.07-21 to Pr.07-23)
[1] This parameter is the source of torque offset.
$[\mathbb{C l}$ When it is set to 3, the source of torque offset will decide to Pr.07-21, Pr.07-22 and Pr.07-23 by the multi-function input terminals setting (31, 32 or 33).

$02-01 \sim 02-08$ is set to31	$02-01 \sim 02-08$ is set to32	$02-01 \sim 02-08$ is set to 33	Torque offset
OFF	OFF	OFF	N/A
OFF	OFF	ON	$07-23$
OFF	ON	OFF	$07-22$
OFF	ON	ON	$07-23+07-22$
ON	OFF	OFF	$07-21$
ON	OFF	ON	$07-21+07-23$
ON	ON	OFF	$07-21+07-22$
ON	ON	ON	$07-21+07-22+07-23$

57-7 9

Control Mode
SVC FOCPG TQCPG FOCPM
Factory Setting:0.0
Settings $\quad 0.0 \sim 100.0 \%$ (rated torque of the motor drive)
[a] This parameter is torque offset. The motor rated torque is 100%.

N 7 7-7 High Torque Offset
Control Mode
SVC FOCPG TQCPG FOCPM
Factory Setting:30.0
Settings $\quad 0.0 \sim 100.0 \%$ (rated torque of the motor drive)
[7] 2
Middle Torque Offset
Control Mode
SVC FOCPG TQCPG FOCPM
Factory Setting:20.0
Settings $\quad 0.0 \sim 100.0 \%$ (rated torque of the motor drive)
[7] 9 L 3 Low Torque Offset
Control Mode
SVC FOCPG TQCPG FOCPM
Factory Setting:10.0
Settings $\quad 0.0 \sim 100.0 \%$ (rated torque of the motor drive)
[1] When it is set to 3, the source of torque offset will decide to Pr.07-21, Pr.07-22 and Pr.07-23 by the multi-function input terminals setting (19, 20 or 21). The motor rated torque is 100%.

Forward Motor Torque Limit
Forward Regenerative Torque Limit
I] 7-2 5 Reverse Motor Torque Limit
Reverse Regenerative Torque Limit
Control Mode
FOCPG TQCPG FOCPM
Factory Setting:200
Settings 0~300\% (rated torque of the motor drive)
(1) The motor rated torque is 100%. The settings for Pr.07-24 to Pr.07-27 will compare with Pr.03-00=5, 6, 7, 8. The minimum of the comparison result will be torque limit.
$1 \mathbb{C l}$ The motor rated torque is 100%. The settings for Pr.07-24 to Pr.07-27 will compare with Pr.03-00=5, 6, 7, 8. The minimum of the comparison result will be torque limit.

Settings 0: Coast to stop
1: By deceleration Time 1
2: By deceleration Time 2
3: By deceleration Time 3
4: By deceleration Time 4
5 : By Pr.01-31
(1) When the multi-function input terminal is set to 10 or 14 and it is ON, the AC motor drive will be operated by Pr.07-28.

97-2 9 Time for Decreasing Torque at Stop

[al When the elevator is stop and the mechanical brake is engaged, the drive will stop output. At the same time, it will produce the noise from the reacting force between the motor and the mechanical brake. This parameter can be used to decrease this reacting force and lower the noise.It is used to set the time for decreasing torque to 0%.

$$
\frac{i}{00-01} \times \frac{100 \%}{300 \%} \times(07-29)=t
$$

71 79 DC Braking Current Level

Control Mode VF VFPG SVC
Factory Setting: 0
Settings; 0~100\% (rated current of the motor drive)This parameter determines the amount of DC Braking Current applied to the motor during starting and stopping. When setting the DC Braking Current, note that 100% corresponds to the rated current of the AC drive. It is recommended to start with a low DC Braking Current level and then increase it slowly until proper holding torque has been attained. The amount of DC Braking Current cannot be higher than the rated current to avoid burning out the motor. So do not use DC brake of the motor drive as the mechanical latching to prevent accidents.When in FOCPG/TQCPG/FOCPM control mode, DC brake can be enabled without setting up Pr07-30.

08 PM Parameters

58-9.9 Motor Auto Tuning

Control Mode
FOCPM

Factory Setting: 0

Settings 0: No function
1:Only for the unloaded motor, auto measure the angle between magnetic pole and PG origin (08-09)

2: For PM parameters (brake locked)
3: Auto measure the angle between magnetic pole and PG origin (08-09)
[1] For setting 1: It can auto measure the angle between magnetic pole and PG origin. Follow the steps below when measuring:

1. Unload before tuning
2. If brake is controlled by drive, the drive will act by the normal operation to finish tuning after wiring and setting brake control parameter
3. brake is controlled by drive, the drive will act by the normal operation to finish tuning after wiring and setting brake control parameter
(1) For setting 3: It can auto measure the angle between magnetic pole and PG origin. Follow the steps below when measuring:
4. It can be loaded motor or unloaded motor before tuning
5. If brake is controlled by drive, the drive will act by the normal operation to finish tuning after wiring and setting brake control parameters
6. If brake is controlled by the host controller, it needs to make sure that brake is in release state before tuning
7. Make sure the setting of Pr.10-02 is correct. Because the wrong setting of Pr.10-02 will cause wrong position of magnetic pole and also the wrong angle between magnetic pole and PG origin
(1) For setting 2: Starting auto tuning by pressing RUN key and it will write the measure value into Pr.08-05, Pr.08-07 (Rs, Lq) and Pr.08-08 (back EMF).
The steps to AUTO-Tuning are: (Static measure)
8. Make sure that all the parameters are set to factory settings and the motor wiring is correct
9. Motor: Fill in Pr.08-01, Pr.08-02, Pr.08-03 and Pr.08-04 with correct values. Refer to motor capacity to set accel. /decel. time
10. When Pr.08-00 is set to 2 , the $A C$ motor drive will execute auto-tuning immediately after receiving a "RUN" command. (NOTE: the motor will run! The shaft needs to be locked with external force
11. After executing, Check if all values are filled in Pr.08-05 and Pr.08-07

■Note

- The rated speed can't be larger or equal to $120 \mathrm{f} / \mathrm{p}$.
- Note that if the electromagnetic valve and brake is not controlled by the AC motor drive, release it manually
- It is recommended to set Pr.08-00 to 1 (unloaded motor) for the accurate calculation. If it needs to execute this function with loaded motor, balance the carriage before execution.
- If it doesn't allow balancing the carriage in the measured environment, it can set Pr. $08-00=3$ for executing this function. It can execute this function with loaded motor by setting Pr.08-00=3. It will have a difference of $15 \sim 30^{\circ}$ by the different encoder type. Also refer to the reference table for tuning in Pr10-00<PG Signal Type>.
- It will display the warning message "Auto tuning" on the digital keypad during measuring until the measure is finished. Then, the result will be saved into Pr.08-09.
- It will display "Auto Tuning Err" on the keypad when stopping by the fault of the AC motor drive or human factor to show the failed detection. At this moment, please check the connections of the wirings of the AC motor drives. If it displays "PG Fbk Error" on the digital keypad, please change the setting of Pr.10-02 (if it is set to 1 , please change it to 2). If it displays "PG Fbk Loss" on the digital keypad, please check the feedback of Z-phase pulse.

I8-9: Full-load Current of Motor

Control Mode

FOCPM
Unit: Amp
Factory Setting: \#.\#\#

Settings (40~120\%) *00-01 Amps
This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is $90 \% \mathrm{X}$ rated current.
Example: if the rated current for $7.5 \mathrm{hp}(5.5 \mathrm{~kW})$ models is 25 A and the factory setting is 22.5 A . In this way, the current range will be from 10A (25*40\%) to 30A (25*120\%).

98-9 Rated Power of Motor

Control Mode
FOCPM
Factory Setting: \#.\#\#
Settings $\quad 0.00 \sim 655.35 \mathrm{~kW}$
(1) It is used to set rated power of the motor. The factory setting is the power of the drive.

[8]

Control Mode
FOCPM
Factory Setting:1710
Settings 0~65535 rpm
Ind is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.

FOCPM
Factory Setting:4
Settings 2~96
(1) It is used to set the number of motor poles (must be an even number).

58-9 R of Motor
Control Mode
FOCPM
Factory Setting:0.000
Settings $0.000 \sim 65.535 \Omega$

98-96
Ld of Motor
(188-47
Lq of Motor
Control Mode
FOCPM
Factory Setting:0.0
Settings $\quad 0.0 \sim 6553.5 \mathrm{mH}$

I8-98 Back Electromotive Force

Control Mode
FOCPM
Factory Setting:0.0
Settings $\quad 0.0 \sim 6553.5 \mathrm{Vrms}$
[0] This parameter is used to set back electromotive force (phase-phase RMS value) when the motor is operated in the rated speed.
[1] It can get RMS value by Pr.08-00=2 (Motor Auto Tuning).

78 - 9 Angle between Magnetic Pole and PG Origin
Control Mode FOCPM Factory Setting:360.0
Settings $0.0 \sim 360.0^{\circ}$
1 [d This function is used to measure the angle between magnetic pole and PG origin.
II - 19 Magnetic Pole Re-orientation
Control Mode
FOCPM
Factory Setting: 0
Settings 0: Disable
1: Enable
[1] Use with Pr.11-00 bit15=1.
This function is used for searching magnetic pole position and only for permanent magnet motor.
$10]$ When it doesn't have origin-adjustment for encoder (Pr.08-09 is 360.0), it can only ensure that the motor operation efficiency can be up to 86% of the best efficiency. In this situation, when the operation efficiency needs to be improved, user can re-power on or set Pr.08-10 to 1 to get the magnetic pole orientation

09 Communication Parameters

79-97 Communication Address

Factory Setting:1

Settings 1~254

[1] If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter. And the communication address for each AC motor drive must be different and unique.

79-9 : Transmission Speed

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:19.2

$$
\text { Settings } \quad 4.8 \sim 115.2 \mathrm{kbits} / \mathrm{s}
$$This parameter is used to set the transmission speed between the RS485 master (PLC, PC, etc.) and AC motor drive.

59-9 Transmission Fault Treatment

1 This parameter is set to how to react if transmission errors occur.

79-93 Time-out Detection

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:0.0
Settings 0.0~100.0sec
0.0: disable
[1] It is used to set the communication time-out time.

78-9\% Communication Protocol

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM

Factory Setting:13
Settings $0: 7, N, 1$ for ASCII
1:7,N,2 for ASCII
2:7,E, 1 for ASCII
3:7, O, 1 for ASCII
4:7,E,2 for ASCII
5:7, O, 2 for ASCII
6:8,N,1 for ASCII
7:8,N,2 for ASCII
8:8,E, 1 for ASCII
9:8, O, 1 for ASCII
10:8, E, 2 for ASCII
11: 8, O, 2 for ASCII
12: 8, N, 1 for RTU
13: 8, N, 2 for RTU
14:8, E, 1 for RTU
15: 8, O, 1 for RTU
16: 8, E, 2 for RTU
17: 8, O, 2 for RTU
[1] Control by PC or PLC (Computer Link)
Users can select the desired mode along with the RS-485 serial port communication protocol in Pr.09-00.
[1] MODBUS ASCII(American Standard Code for Information Interchange): Each byte data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex , shown as ' 64 ' in ASCII, consists of ' 6 ' (36Hex) and '4' (34Hex).

1. Code Description:

Communication protocol is in hexadecimal, ASCII: "0", "9", "A", "F", every 16 hexadecimal represents ASCII code. For example:

Character	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30 H	31H	32H	33 H	34H	35H	36H	37H

Character	'8'	'9'	'A'	'B'	'C'	'D'	' E '	'F'
ASCII code	38 H	39 H	41 H	42 H	43 H	44 H	45 H	46 H

2. Data Format

10-bit character frame (For ASCII):
(Format: 7, N, 2)

(Format: 7, E, 1)

(Format: 7, O, 1)

11-bit character frame (For RTU)
(Format: $8, N, 2$)

(Format: $8, \mathrm{E}, 1$)

(Format 8, O, 1)

3. Communication Protocol

3.1 Communication Data Frame

ASCII mode

STX	Start character ' $:$ ' (3AH)
Address Hi	Communication address:
Address Lo	8-bit address consists of 2 ASCII codes
Function Hi	Command code:
Function Lo	8-bit command consists of 2 ASCII codes
DATA (n-1)	Contents of data:
to	Nx8-bit data consist of 2n ASCII codes
DATA 0	LRC16, maximum of 32 ASCII codes
LRC CHK Hi	8-bit check sum:
LRC CHK Lo	End characters:
END Hi	END1= CR (ODH), END0 $=$ LF(OAH) 2 ASCII codes
END Lo	

RTU mode:

START	A silent interval of more than 10 ms
Address	Communication address: 8 -bit address
Function	Command code: 8 -bit command
DATA $(\mathrm{n}-1)$	Contents of data:
to	$\mathrm{n} \times 8$-bit data, $\mathrm{n}<=16$
DATA 0	CRC check sum:
CRC CHK Low	16 -bit check sum consists of 28 -bit characters
CRC CHK High	A silent interval of more than 10 ms
END	

3.2 Address (Communication Address)

Valid communication addresses are in the range of 0 to 254 . A communication address equal to 0 means broadcast to all AC drives (AMD). In this case, the AMD will not reply any message to the master device. 00 H : broadcast to all AC drives
$01 \mathrm{H}: \mathrm{AC}$ drive of address 01
OFH: AC drive of address 15
10H: AC drive of address 16
:
FEH: AC drive of address 254

3.3 Function (Function code) and DATA (data characters)

The format of data characters depends on the function code.

(1) 03 H : read data from register

Example: reading continuous 2 data from register address 2102 H, AMD address is 01 H .

ASCII mode:

Command Message:		Response Message:	
STX	':'	STX	':
Address	'0'	Address	'0'
	'1'		'1'
Function	'0'	Function	'0'
	'3'		'3'
Starting address	'2'	Number of data (count by byte)	'0'
	'1'		'4'
	'0'	Content of starting address 2102 H	'1'
	'2'		'7'
Number of data (count by word)	'0'		'7'
	'0'		'0'
	'0'	Content of address 2103H	'0'
	'2'		'0'
LRC Check	'D'		'0'
	'7'		'0'
END	CR	LRC Check	'7'
	LF		'1'
		END	CR
			LF

RTU mode:
Command \& Message:

Address	01 H
Function	03 H
Starting data address	21 H
	02 H
Number of data	00 H
(count by world)	02 H
CRC CHK Low	6 FH
CRC CHK High	F7H

Response Message:	
Address	01 H
Function	03 H
Number of data (count by byte)	04 H
Content of data address 2102H	17 H
Content of data address 2103H	70 H
CRC CHK Low	00 H
CRC CHK High	00 H

(2) 06 H : single write, write single data to register.

Example: writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H .
ASCII mode:

Command \& Message:

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

Response Message:

STX	\because
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:

Command \& Message:		Response Message:	
Address	01H	Address	01H
Function	06H	Function	06H
Data address	01H	Data address	01H
Data address	00H	Data address	00H
Data content	17H	Data content	17H
Data content	70H	Data content	70H
CRC CHK Low	86H	CRC CHK Low	86H
CRC CHK High	22 H	CRC CHK High	22 H

(3) $\mathbf{1 0 H}$: write multiple registers (write multiple data to registers) (at most 20 sets of data can be written simultaneously)
Example: Set the multi-step speed,
Pr.04-00=50.00 (1388H), Pr.04-01=40.00 (0FA0H). AC drive address is 01 H .

ASCII mode

Command Message:	
STX	$' \ddots$
ADR 1	$' 0 '$
ADR 0	$' 1 '$
CMD 1	$' 1 '$
CMD 0	$' 0 '$
Target Register	$' 0 '$
	$' 5 '$
	$' 0 '$

RTX	
ADR 1	\ddots
ADR 0	$' 0 '$
CMD 1	$' 1 '$
CMD 0	$' 1 '$
Target Register	$' 0 '$
	$' 0 '$
	$' 5 '$
	$' 0 '$

Number of Register (Count by word)	'0'
	'0'
	'0'
	'2'
Number of Register (Count by byte)	'0'
	'4'
The first data content	'1'
	'3'
	'8'
	'8'
The second data content	'0'
	'F'
	'A'
	'0'
LRC Check	'9'
	'A'
END	CR
	LF

Number of Register (Count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'E'
	'8'
END	CR
	LF

RTU mode

Command Message:		Response:	
ADR	01H	ADR	01H
CMD	10H	CMD 1	10H
Target	05H	Target	05H
Register	00H	Register	00H
Number of Register	00H	Number of Register	00H
(Count by word)	02H	(Count by word)	02H
Number of Register(Byte)	04	CRC Check Low	41H
The first	13H	CRC Check High	04H
Data content	88H		
The second	OFH		
Data content	AOH		
CRC Check Low	'9'		
CRC Check High	'A'		

3.4 Check Sum

ASCII mode (LRC Check)

LRC (Longitudinal Redundancy Check) is calculated by summing up the values of the bytes from ADR1 to the last data character then calculating the hexadecimal representation of the 2 's-complement negation of the sum.

For example,
$01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$, the 2 's-complement negation of 29 H is D 7 H .

RTU mode (CRC check)

CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFH.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.

Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right with MSB zero filling, then repeat step 3. If the LSB of CRC register is 1 , shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A 001 H , then repeat step 3.

Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8 -bit byte will have been processed.
Step 6: Repeat step 2 to 5 for the next 8-bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

```
unsigned char* data < // a pointer to the message buffer
unsigned char length <// the quantity of bytes in the message buffer
unsigned int crc_chk(unsigned char* data, unsigned char length)
        {
    int j;
        unsigned int reg_crc=0Xffff;
    while(length--){
        reg_crc ^= *data++;
        for(j=0;j<8;j++){
        if(reg_crc & 0x01){ /* LSB(b0)=1 */
            reg_crc=(reg_crc>>1) ^ 0Xa001;
        }else{
            reg_crc=reg_crc >>1;
        }
    }
}
return reg_crc; // return register to CRC
```


3.5 Address List

The contents of available addresses are shown as below:

Content	Address	Function	
AC drive Parameters	GGnnH	GG means parameter group, nn means parameter number, for example, the address of $\operatorname{Pr} 4-01$ is 0401 H . Referencing to chapter 5 for the function of each parameter. When reading parameter by command code 03 H , only one parameter can be read at one time.	
Command Write only	2000H	Bit 0-3	$\begin{aligned} & \text { 0: No function } \\ & \text { 1: Stop } \\ & \text { 2: Run } \\ & \text { 3: Jog + Run } \\ & \hline \end{aligned}$
Status monitor Read only		Bit 4-5	00B: No function 01B: FWD 10B: REV 11B: Change direction
		Bit 6-7	00B: 1st accel/decel 01B: 2nd accel/decel 10B: 3rd accel/decel 11B. 4th acceld
		Bit 8-11	Represented 16 step speeds.
		Bit 12	1: Enable bit 06-11
		Bit 13~14	00B: No function
			01B: operated by digital keypad
			02B: operated by Pr.00-15 setting
			03B: change operation source
		Bit 15	Reserved
	2001H	Frequency c	mmand
		Bit 0	1: EF (external fault) on
	2002H	Bit 1	1: Reset
	2002H	Bit 2	1: B.B. ON
		Bit 3-15	Reserved
	2100H	Fault code:	er to Pr.06-16 to Pr.06-21
		Bit 0-Bit 1	00: Stop
			01: deceleration
			10: Ready for operation
			11: operation
		Bit 2	1:JOG command
			00: FWD command, FWD output
		Bit 3-Bit 4	01: FWD command, REV output
		Bit 3-bit 4	10: REV command, FWD output
	2119H		11: Reserved
		Bit 5	Reserved
		Bit 6	Reserved
		Bit 7	Reserved
		Bit 8	1: Master frequency Controlled by communication interface
		Bit 9	1: Master frequency controlled by analog/external terminals signal
		Bit 10	1: Operation command controlled by communication interface
		Bit 11	1: Parameters have been locked
		Bit 12	1: enable to copy parameter from keypad
		Bit 13-15	Reserved
	2102H	Frequency command (F)	
	2103H	Output frequency (H)	
	2104H	Output current (AXXX.X)	
	2105H	DC-BUS Voltage (UXXX.X)	
	2106 H	Output voltage (EXXX.X)	
	2107H	Current step number of Multi-Step Speed Operation	
	2116H	Multi-function display (Pr.00-04)	
	2201H	Pr.00-05 user-defined setting	
	2203H	AUI1 analog input (XXX. XX \%)	
	2204H	ACl analog input (XXX. XX \%)	

Content	Address	Function
	2205 H	AUI2 analog input (XXX.XX \%)
	2206 H	Display temperature of IGBT $\left({ }^{\circ} \mathrm{C}\right)$
	2207 H	Display temperature of heatsink $\left({ }^{\circ} \mathrm{C}\right)$ (only for model 40HP and above)
	2208 H	Digital input state
	2209 H	Digital output state

3.6 Exception Response

The AC motor drive is expected to return a normal response after receiving command messages from the master device. The following depicts the conditions when no normal response is replied to the master device.

The AC motor drive does not receive the messages due to a communication error; thus, the AC motor drive has no response. The master device will eventually process a timeout condition.

The AC motor drive receives the messages without a communication error, but cannot handle them. An exception response will be returned to the master device and an error message "CExx" will be displayed on the keypad of AC motor drive. The $x x$ of "CExx" is a decimal code equal to the exception code that is described below.

In the exception response, the most significant bit (bit7) of the original command code is set to 1 (function code and 80 H), and an exception code which explains the condition that caused the exception is returned.

Example:

ASCII mode:		RTU mode	
STX	':'	Address	01H
Address	'0'	Function	86H
Address	'1'	Exception code	02H
Function	'8'	CRC CHK Low	C3H
Function	'6'	CRC CHK High	A1H
Exception code	'0'		
Exception code	'2'		
IRC CHK	'7'		
LRC	'7'		
END	CR		
END	LF		

Description of Exception Codes:

Exception Code	Description
1	Illegal function code: The function code received in the command message is not available for the AC motor drive.
2	Illegal data address: The data address received in the command message is not available for the AC motor drive. Illegal data value: The data value received in the command message is not available for the AC drive.
3	Slave device failure: The AC motor drive is unable to perform the requested action.
4	Communication time-out: If Pr.09-03 is not equal to 0.0, Pr.09-02=0~1, and there is no communication on the bus during the Time Out detection period (set by Pr.09-03), "cE10" will be shown on the keypad.
10	

79-95 Response Delay Time

Control Mode
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting:2.0
Settings $\quad 0.0 \sim 200.0 \mathrm{~ms}$In case if the host computer didn't finish the transmitting/receiving process, this parameter is the response delay time after AC drive receives communication command as shown in the following.

89-95
 89-13

Direct docking mode only

Control

10 Speed Feedback Control Parameters

In this parameter group, ASR is the abbreviation for Adjust Speed Regulator and PG is the abbreviation for Pulse Generator.

1 $\boldsymbol{1}$ - 7 Selection of Encoder

Control Mode
VFPG
FOCPG TQCPG FOCPM
Factory Setting: 0
Settings 0: Disable
1: ABZ
2: ABZ+Hall
3: SIN/COS + Sinusoidal
4: SIN/COS + Endat
5: SIN/COS
6: SIN/COS + Hiperface
1 When Pr.10-00 is set to 3 , encoder will have one sine and one cosine signal for each revolution. The signal must be: 0.75 to 1.2 Vpp for the amplitude with phase angle $90^{\circ} \pm 5$ elec. (EX: ERN 1185 ERN 1387)
[1] When setting is 4 or 6 , it needs to wait for 2 seconds after applying the power to execute RUN command.
[1] Detection of the magnetic pole:
Setting 1 or 5: The AC motor drive will output short circuit to detect the position of the magnetic pole. At this moment, the motor will generate a little noise.
Setting 2: The AC motor drive will detect the position of the magnetic pole by the UVW signal of encoder.
Setting 3: The AC motor drive will detect the position of the magnetic pole by the sine signal of encoder.
Setting 4 or 6: The AC motor drive will detect the position of the magnetic pole by the communication signal of encoder.
[1]) Reference table for tuning

Setting of PG signal type	PG signal type	Applicable PG card	Pr.08-00=1	Pr.08-00=3
10-00=1	A, B, Z	EMED-PGAB/ABD-1	N/A	N/A
10-00=2	A, B, Z+U, V, W	EMED-PGABD-1	Rolling test* ${ }^{1}$	Rolling test**
$10-00=3$	SIN/COS+ Sinusoidal	EMED-PGHSD-1	Rolling test* ${ }^{1}$	Rolling test*1
10-00=4	SIN/COS+Endat	EMED-PGSD-1	Dynamic test* ${ }^{1}$	Static test*1
$10-00=5$	SIN/COS	EMED-PGHSD-1	N/A	N/A
10-00=6	SIN/COS + Hiperface	EMED-PGHSD-1	Dynamic test* ${ }^{1}$	Static test* ${ }^{1}$

*1 Static: Brake engaged, no motor running/ Dynamic: Brake released, motor rotates less than one round/ Rolling: Brake released, motor rotates more than one round.
; 기 $\boldsymbol{1}$ Encoder Pulse
Control Mode
VFPG
FOCPG TQCPG FOCPM
Factory Setting:2048

$$
\text { Settings } \quad 1 \sim 25000
$$A Pulse Generator (PG) or encoder is used as a sensor that provides a feedback signal of the motor speed. This parameter defines the number of pulses for each cycle of the PG control.

[1] It is helpful for the stable control by inputting correct pulse type.
Wh When Pr10-00 is set as 3, 4,5 or 6, Pr10-02 can only be set as 0,1 or 2 , while 3,4 and 5 cannot be chosen.

19-3 Encoder Feedback Fault Treatment (PGF1, PGF2)
Control Mode VFPG FOCPG TQCPG FOCPM
Settings 0 : Warn and keep operation
1: Fault and RAMP to stop
2: Fault and stop operation

1 $\boldsymbol{1}$ - 4 Detection Time for Encoder Feedback Fault

Control Mode VFPG FOCPG TQCPG FOCPM Factory Setting:1.0
Settings 0.0~10.0sec
1 When PG loss, encoder signal error, pulse signal setting error or signal error, if time exceeds the detection time for encoder feedback fault (Pr.10-04), the PG signal error will occur. Refer to the Pr. 10-03 for encoder feedback fault treatment.

19-95 Encoder Stall Level (PGF3)

Control Mode VFPG SVC FOCPG FOCPM Factory Setting:115
Settings 0~120\%
0 : Disable
[1] This parameter determines the maximum encoder feedback signal allowed before a fault occurs. (max. output frequency Pr.01-00 = 100\%

17-96 Encoder Stall Detection Time (maximum output frequency 01-00=100\%)
Control Mode VFPG SVC FOCPG FOCPM Factory Setting:0.1
Settings 0.0~2.0sec
IT $\boldsymbol{7} \boldsymbol{7}$ Encoder Slip Range (PGF4) (maximum output frequency 01-00=100\%)
Control Mode
VFPG SVC FOCPG
FOCPM
Factory Setting:50
Settings 0~50\%
0: Disable
19-8 Encoder Slip Detection Time (maximum output frequency 01-00=100\%)
Control Mode
VFPG SVC FOCPG
FOCPM
Factory Setting:0.5
Settings $\quad 0.0 \sim 10.0 \mathrm{sec}$
17 - 9 Encoder Stall and Slip Error Treatment (maximum output frequency 01-00=100\%)
Control Mode VFPG SVC FOCPG FOCPM Factory Setting:2
Settings 0: Warn and keep operating
1: Fault and RAMP to stop
2: Fault and COAST to stop
[1] When the value of (rotation speed - motor frequency) exceeds Pr.10-07 setting, detection time exceeds Pr.10-08 or motor frequency exceeds Pr.10-05 setting, it will start to accumulate time. If detection time exceeds Pr.10-06, the encoder feedback signal error will occur. Refer to Pr.10-09 encoder stall and slip error treatment.

19-19 Mode Selection for UVW Input
Control Mode
VFPG
FOCPG TQCPG FOCPM
Factory Setting: 0
Settings $\quad 0: Z$ signal is at the falling edge of U-phase
1: Z signal is at the rising edge of U-phase
Setting 0 : when the operation is $U->V->W, Z$ signal is at the falling edge of U-phase.
Setting 1: when the operation is $U->V->W, Z$ signal is at the rising edge of U-phase.

Pr. 10-10=0

N ! ! - ! ASR (Auto Speed Regulation) Control (P) of Zero Speed
Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:100.0
Settings 0.0~1000.0\%
19-12 ASR (Auto Speed Regulation) Control (I) of Zero Speed
Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.100
Settings 0.000~10.000sec
1719 (7 ASR (Auto Speed Regulation) control (P) 1
Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:100.0
Settings 0.0~1000.0\%

If - 14

Control Mode
ASR (Auto Speed Regulation) control (I) 1
VF VFPG SVC FOCPG FOCPM Factory Setting:0.100
Settings 0.000~10.000sec
19-15
ASR (Auto Speed Regulation) control (P) 2
Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:100.0
Settings 0.0~1000.0\%
19-15 ASR (Auto Speed Regulation) control (I) 2
Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.100
Settings 0.000~10.000sec

19- ! 7 ASR 1/ASR2 Switch Frequency

Control Mode VF VFPG SVC FOCPG
FOCPM
Factory Setting:7.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
0 : Disable
Id ASR P determines Proportional control and associated gain (P). ASR I determines integral control and associated gain (I).
[1] When integral time is set to 0 , it is disabled. Pr.10-17 defines the switch frequency for the ASR1 (Pr.10-13, Pr. 10-14) and ASR2 (Pr.10-15, Pr. 10-16).

[1] When using multi-function input terminals to switch ASR1/ASR2, the diagram will be shown as follows.
Setting multi-function input terminal to 17

19-18 ASR Primary Low Pass Filter Gain

Control Mode VF VFPG SVC FOCPG
FOCPM
Factory Setting:0.008
Settings $0.000 \sim 0.350 \mathrm{sec}$
[1] It defines the filter time of the ASR command.
[1] When setting to 1 , this function is disabled.

19-! Zero Speed Gain (P)

Control Mode FOCPM Factory Setting:80.00
Settings 0~655.00\%
[1] When Pr.11-00 is set to Bit $7=1$, $\operatorname{Pr} .10-19$ is valid
19-9
Control Mode FFPG FOCPG Factory Setting:5.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
in- 3 : ASR1/ASR2 Width Adjustment
Control Mode
VFPG FOCPG
FOCPM
Factory Setting:5.00
Settings $\quad 0.00 \sim 400.00 \mathrm{~Hz}$
[1] These two parameters are used to decide width of slope of ASR command during zero speed to low speed or Pr.10-17 to high speed.

19-2 Zero Speed Position Holding Time

Control Mode
FOCPM
Factory Setting:0.250
Settings $0.001 \sim 65.535 \mathrm{sec}$
17] I 3 Filter Time at Zero Speed
Control Mode
FOCPM
Factory Setting:0.004
Settings $0.001 ~ 65.535 \mathrm{sec}$
17-7 Time for Executing Zero Speed
Control Mode
FOCPM
Factory Setting: 0
Settings $\quad 0:$ After the brake release set in Pr.02-29
1: After the brake signal input (Pr.02-01~02-08 is set to 42)
(1)] When Pr. 10-24=0, the zero speed control needs to be used with Pr.02-29. (refer to the explanations in Pr.02-32)
$19-3 E$ Elevator Leveling (Zero Speed Gain P)
Control Mod

17-37 Elevator Starting (Zero Speed Gain P)

Control Mode VF VFPG SVC FOCPG
FOCPM
Factory Setting:100.0
Settings 0.0~1000.0\%
1! - Elevator Starting (Zero Speed Integral I)
Control Mode VF VFPG SVC FOCPG FOCPM Factory Setting:0.100

$$
\text { Settings } \quad 0.000 \sim 10.000 \mathrm{sec} \text {. }
$$

" $18-29$
Control Mode
Setting of PG card frequency division output

	VFPG	FOCPG	FOCPM	Factory Setting: 0
Settings 0~31				
Type of PG card frequency division output				
	VFPG	FOCPG	FOCPM	Factory Setting: 0000h
Settings	0000h			

Control Mode VFPG FOCPG FOCPM Factory Setting: 0000h Settings 0000h~0008hSee CH 07 for more information about PG card.

19-2 ! Type of PG card frequency division output
Control Mode VFPG FOCPG FOCPM Factory Setting: 0000h
Settings 0000h~0008h
[1] When using Heidenhain ERN1387 encoder, adjust the definition of Delta PG card EMED-PGHSD-1's terminal 10 and terminal 11 by through $\operatorname{Pr} 10-31$.
[1] Delta PG card: EMED-PGHSD-1 (D-sub Terminal \#)

	Heidenhain ERN1387	
Terminal \#	$\mathbf{1 0 - 3 1 = 0 0 0 0 h}$	$\mathbf{1 0 - 3 1 = 0 0 0 1}$
10	C-	C+
11	C+	C-

11 Advanced Parameters

: : 7 S System Control
Control Mode
FOCPG
FOCPM
Factory Setting: 0000h
Settings
Bit 0=0: No function
Bit 0=1: ASR Auto tuning, PDFF enable
Bit 7=0: No function
Bit 7=1: When position control is enabled, it doesn't need to set Pr.07-02 (DC Brake
Current Level)
Bit 9=0: Rolling PG Origin auto-tuning with load (support by PGHSD-1)
Bit 9=1: Static PG Origin auto-tuning with load by enabling PGHSD-1
Bit 15=0: When power is applied, it will detect the position of magnetic pole again
Bit 15=1: when power is applied, it will start from the magnetic pole position of previous power failure
(1) Bit $0=1$: PDFF function is enabled and system will generate an ASR setting, $\operatorname{Pr} .10-11 \sim 10-16$ will be invalid and Pr.11-09 to 11-10 will be valid.

: 1-9 : Elevator Speed

Control Mode

FOCPG
FOCPM
Settings $\quad 0.10 \sim 4.00 \mathrm{~m} / \mathrm{s}$
: : 1 S Sheave Diameter
Control Mode
FOCPG
FOCPM
Factory Setting:400
! : 1 ? Mechanical Gear Ratio
Control Mode

FOCPG FOCPM
Factory Setting:1
: 1 - 1 Suspension Ratio
Control Mode
FOCPG
FOCPM
Factory Setting:1
Settings $0=1: 1$
$1=2: 1$
suspension ration 1:1
carriage

The load inertia can be calculated by the settings of motor parameter, Pr.11-02 Sheave Diameter, Pr.11-14 Motor Current at Accel. and Pr.11-15 Elevator Acceleration. This parameter can be used to adjust inertia ratio of load.
: 1 - 5 Zero-speed Bandwidth

Control Mode
FOCPG
Settings $\quad 1 \sim 40 \mathrm{~Hz}$

: : $\boldsymbol{7}$ Tow-speed Bandwidth

Control Mode
Settings $1 \sim 40 \mathrm{~Hz}$
FOCPG

FOCPG FOCPM

FOCPM

Factory Setting:10辟

Factory Setting:10

! \boldsymbol{T} 冎 High-speed Bandwidth

Control Mode

FOCPG

FOCPM
Factory Setting:10
Settings $\quad 1 \sim 40 \mathrm{~Hz}$
[1] After estimating inertia and set Pr.11-00=1 (auto tuning), user can adjust parameters Pr.11-06, 11-07 and 11-08 separately by speed response. The larger number you set, the faster response you will get. Pr.10-08 is the switch frequency for low-speed/high-speed bandwidth.

: 193 PDFF Gain Value

Control Mode
FOCPG
FOCPM
Factory Setting:30
Settings 0~200\%
[1] After finishing estimating and set Pr.11-00=1 (auto tuning), using Pr.11-09/11-10 to reduce overshoot. Please adjust PDFF gain value by actual situation.
ⓓ Besides traditional PI control, it also provides PDFF function to reduce overshoot for speed control.

1. Get system inertia
2. Set Pr.11-00 to 1
3. Adjust Pr.11-09/11-10 (the larger number is set and the suppressed overshoot function will be better. But it needs to be used by the actual condition)

1: 19 Gain for Speed Feed Forward
Control Mode
FOCPG
FOCPM
Factory Setting: 0
Settings 0~500
[1] Pr.11-09 and Pr.11-10 will be enabled when Pr.11-00 is set to Bit0=1.

: : - 15 Elevator Acceleration
Control Mode
FOCPM
Factory Setting:0.75
Settings $\quad 0.20 \sim 2.00 \mathrm{~m} / \mathrm{s}^{2}$

1: 1 : R Reserved
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: 0
Settings 0000h~FFFFh
\sim ! : ? Reserved
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Settings Read Only

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: \#.\#\#
Settings 0000h~FFFFh

12 User-defined Parameters

12-78

Present Fault Record

Control Mode
VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting: \#.\#\#
Settings 0616

? 2 -
Present Fault Time of Motor Operation (min.)
Control Mode
VF VFPG SVC FOCPG TQCPG FOCPM
Factory Setting: \#. \#\#
Settings 0632

```
12- \(\boldsymbol{E}^{2}\) Present Fault Time of Motor Operation (day)
Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting:\#.\#\#
Settings 0633
```

12-9 Frequency Command at Present Fault
Control Mode VF VFPG SVC FOCPG TQCPG
FOCPM
Factory Setting:\#.\#\#
Settings 0653
$12-74$
Output Frequency at Preset Fault
Control Mode
VF VFPG SVC FOCPG TQCPG
FOCPM
Factory Setting:\#.\#\#
Settings 0654

$12-75$

Output Current at Present Fault
Control Mode
VF VFPG SVC FOCPG TQCPG
FOCPM
Factory Setting:\#.\#\#
Settings 0655

$12-95$

Motor Frequency at Present Fault
Control Mode
VF VFPG
SVC
FOCPG TQCPG
FOCPM
Factory Setting:\#.\#\#
Settings 0656

B-7
Control Mode
Output Voltage at Present Fault
Control Mode
VF VFPG SVC FOCPG TQCPG
FOCPM
Factory Setting:\#.\#\#
Settings 0657

12-98DC-Bus Voltage at Present Fault
Control Mode
VF VFPG SVC FOCPG TQCPG
FOCPM
Factory Setting:\#.\#\#
Settings 0658

$12-95$Output Power at Present Fault
Control Mode
VF VFPG SVC FOCPG TQCPG
FOCPM
Factory Setting:\#.\#\#

[^3]

$19-39$ No factory setting
！ごき！No factory setting

12－78

～User－defined Parameters

：2－3；

Control Mode VF VFPG SVC FOCPG TQCPG FOCPM Factory Setting：－

Settings

Users can enter the parameters from group 0 to group 11 into group 12 （it can save 32 parameters）．The saved value can also be the parameter addresses（but the hexadecimal value needs to be converted to decimal value）．［a］Example 2：If it needs to enter parameter address 2102 H and 211 BH by the digital keypad， 211 BH needs to be converted to binary value before entering．
The setting method of 2102 H

［1］Examples of User－defined parameters

Example 1：If you want to enter Pr．08－03 into Pr．12－00，you only need to enter 0803 into Pr．12－00．Then it will display the setting of Pr．08－03 in Pr．13－00．

Example 2：If it needs to enter parameter address 2102 H and 211BH by the digital keypad，211BH needs to be converted to binary value before entering．

The setting method of 211 BH
Convert 211BH（hexadecimal）to decimal value：
21 1
$\underline{1} \times 16^{1}+\underline{11} \times 16^{0}=16+11=27$ input 2127

13 View User Defined Parameters

13-98

View User Defined Parameters

i3-3i

$\begin{array}{ccccc}\text { Control Mode } & \text { VF } & \text { VFPG } \quad \text { SVC FOCPG TQCPG FOCPM } & \text { Factory Setting:- } \\ \text { Settings } & -\operatorname{Pr} 00-00 \text { to Pr11-19 } & \end{array}$

13 Warning Codes

(2)	CE01	(1) Display error (2) Abbreviated The code is (3) Display error	rror code isplayed as shown on KPC-CE01. description
ID No.	Display on KPE-LE01	Display on LCM Keypad	Descriptions
1	EEB	CE01 HAND Warning CE01 Comm. Cmd. Err	Communication command defected Cause Communication error
2		CE02 Warning CE02 Data Adrr. Err	Address of data defected Cause Communication error
3	EEI	CE03 HAND Warning CE03 Data Length Err	Length of communication data defected Cause Communication error Communication error
4	EEM	CE04 Warning CE04 Wrong Writing	Communications being written in a read only address. Cause Communication error
5	$E E$	CE10 Warning CE10 Comm. Time Out	Modbus transmission time-out Cause Communication error
6	Eigiof	CP10 Warning CP10 Keypad time out	Keypad KPC-CC01 transmission time-out Cause Communication error
7	EiEi	SE1 Warning SE1 Keypad Copy Err	Keypad copying parameter error 1 Cause Keypad simulation error, including communication delays, communication error (keypad received error FF86) and parameter value error.
8	EEE	SE2 HAND Warning SE2 Keypad Copy Fail	Keypad copying parameter fail error 2 Cause keypad simulation done but parameter write error

ID No．	Display on KPE－LE01	Display on LCM Keypad	Descriptions
9	8181	oH 1 HAND Warning oH1 IGBT Over Heat	IGBT over－heating warning Cause The temperature of the IGBT are over the factory setting $90^{\circ} \mathrm{C}$（Pr06－14）．
10	E180	oH2 Warning oH2 Capacitance oH	Capacitor over－heating warning Cause The temperature of the capacitor is over $65^{\circ} \mathrm{C}$ ．．
15	■可 1	PGF1 Warning PGF1 PGFBK warn	PG card feedback error Cause When Pr10－03＝ 0 （factory setting＝2）， a warning message will be displayed instead of a fault message while an error occurs．
16	『ヨ゙コ	PGF2 Warning PGF2 PGFBKLoss	PG feedback loss warning Cause Pr10－03＝ 0 （factory setting＝2），a warning message will be displayed instead of a fault message while an error occurs．
17	『可	PGF3 Warning PGF3 PGFBK Stall	PG feedback stall warning Cause Pr10－09＝ 0 （factory setting＝2），a warning message will be displayed instead of a fault message while an error occurs．
18		PGF4 Warning PGF4 PG Slip Err	PG slip warning Cause Pr10－09＝ 0 （factory setting＝2），a warning message will be displayed instead of a fault message while an error occurs．
19	Ficic	PHL Warning PHL Phase Loss	Phase loss Cause When Pr06－01＝0（factory setting＝2），a warning message will be given instead of a fault message while a phase loss occurs．
20	Eit	Ot1 Warning ot 1 Over Torque 1	Over torque 1 Cause When Pr06－05＝1 or 3 （factory setting＝2），a warning message will be given instead of a fault message while there is an over torque detection．
21	E18	Ot2 Warning ot2 Over Torque 2	Over torque 2 Cause When Pr06－05＝1 or 3 （factory setting＝2），a warning message will be given instead of a fault message while there is an over torque detection．
22	E18	oH3 Warning oH3 Motor Over Heat（PTC）	Motor over－heating（PTC） Cause When Pr06－26＝ 1 （factory setting＝0），a warning message will be given when there is a PTC detection．

ID No．	Display on KPE－LE01	Display on LCM Keypad	Descriptions
24	O1\％	oSL Warning OSLD Over Slip Warn	Over slip Cause When Pr05－16＝0（factory setting $=0$ ），a warning message will be given while the sip deviation level is over the setting at Pr05－14 and the detection time is longer than the setting at Pr05－15．
25	E！！\％	tUn Warning tUn Auto tuning	Auto tuning in process
26	FFin	FAn Warning Fan Fan Off	Fan stop turning Cause When Pr06－45 bit $1=1$ ，a warning message will be given when the cooling fan is locked（when bit1＝1，there is an output error）．
27	dían	dCAN Warning CAN OFF CAN bus Off	CANbus off Cause Error（s）occurred on CANbus
28	Бヒ「ワ	STOA Warning STOA STO Warning	Safety Torque Off Alarm Cause Safety torque output is off and Pr06－49＝1 or 3 ．

14 Fault Codes

（1）Display fault（error）signal．
（2）Abbreviated fault（error）code
The code is displayed as shown on KPC－CC01．
Display fault（error）description．
＊In accordance with the settings of Pr06－16～Pr06－21．

ID＊	Display on KPE－LE01	LCM Panel Display	Descriptions
1	二ヒ\％	Fault ocA oc at Accel	Over－current during acceleration （Output current exceeds triple rated current during acceleration．） corrective action 1．Short－circuit at motor output：Check for possible poor insulation at the output． 2．Acceleration Time is too short：Increase the Acceleration Time． 3．AC motor drive output power is too small：Replace the AC motor drive with a higher power model．
2	二ロロ	Fault ocd oc at Decel	Over－current during deceleration （Output current exceeds triple rated current during deceleration．） corrective action 1．Short－circuit at motor output：Check for possible poor insulation at the output． 2．Deceleration Time is too short：Increase the Deceleration Time． 3．AC motor drive output power is too small：Replace the AC motor drive with a higher power model．
3	日に		Over－current during steady state operation（Output current exceeds triple rated current during constant speed．） corrective action 1．Short－circuit at motor output：Check for possible poor insulation at the output． 2．Sudden increase in motor loading：Check for possible motor stall． 3．AC motor drive output power is too small：Replace the $A C$ motor drive with a higher power model．
4	EFE	HAN Fault GFF Ground Fault	Ground fault corrective action When（one of）the output terminal（s）is grounded，short circuit current is more than 50% of AC motor drive rated current，the AC motor drive power module may be damaged． NOTE：The short circuit protection is to protect the AC motor drive，not to protect the user． 1．Check the wiring connections between the AC motor drive and motor for possible short circuits，also to ground． 2．Check whether the IGBT power module is damaged． 3．Check for possible poor insulation at the output．
5	こにに		Short－circuit is detected between upper bridge and lower bridge of the IGBT module． corrective action Return to the factory．

6	ロに		Hardware failure in over current detection corrective action Return to the factory．
7			DC BUS over－voltage during acceleration 230V：DC 405V；460V：DC 810 V corrective action 1．Check if the input voltage falls within the rated AC motor drive input voltage range． 2．Check for possible voltage transients． 3．If DC BUS over－voltage due to regenerative voltage，increase the acceleration time or add an optional brake resistor．
8	Oリー		DC BUS over－voltage during deceleration 230V：DC 405V；460V：DC 810 V corrective action 1．Check if the input voltage falls within the rated AC motor drive input voltage range． 2．Check for possible voltage transients． 3．If DC BUS over－voltage due to regenerative voltage，increase the Deceleration Time or add an optional brake resistor．
9	O！		DC BUS over－voltage at constant speed 230V：DC 405V；460V：DC 810V corrective action 1．Check if the input voltage falls within the rated AC motor drive input voltage range． 2．Check for possible voltage transients． 3．If $D C B U S$ over－voltage due to regenerative voltage，increase the Deceleration Time or add an optional brake resistor．
10	ロッ 「		Hardware failure in voltage detection corrective action 1．Check if the input voltage falls within the rated AC motor drive input voltage range． 2．Check for possible voltage transients．
11	1－29\％		DC BUS voltage is less than the setting at Pr．06－00 during acceleration． corrective action 1．Check if the input voltage is normal． 2．Check for possible sudden load．
12	1－10iol		DC BUS voltage is less than Pr．06－00 during deceleration． corrective action 1．Check if the input voltage is normal． 2．Check for possible sudden load．

13	1－20		DC BUS voltage is less than the setting at Pr．06－00 at constant speed corrective action 1．Check if the input voltage is normal． 2．Check for possible sudden load．
14	1．		DC BUS voltage is less than the setting at Pr．06－00 at stop． corrective action 1．Check if the input voltage is normal． 2．Check for possible sudden load．
15	FHil		Phase Loss corrective action Check Power Source Input if all 3 input phases are connected without loose contacts．
16	Eini		IGBT overheating IGBT temperature exceeds protection level $3 \sim 5 \mathrm{HP}, 50 \sim 60 \mathrm{HP}: 105^{\circ} \mathrm{C}$ $7.5 \sim 30 \mathrm{HP}: 95^{\circ} \mathrm{C}$ $40 \sim 100 \mathrm{HP}: 110^{\circ} \mathrm{C}$ corrective action 1．Ensure that the ambient temperature falls within the specified temperature range． 2．Make sure that the ventilation holes are not obstructed． 3．Remove any foreign objects from the heatsinks and check for possible dirty heatsink fins． 4．Check the fan and clean it． 5．Provide enough spacing for adequate ventilation．
17	ロップ		Capacitor overheating． Capacitor＇s temperature exceeds the protection level． $3 \sim 100 \mathrm{HP}: 65^{\circ} \mathrm{C}$ ． corrective action 1．Ensure that the ambient temperature falls within the specified temperature range． 2．Make sure heat sink is not obstructed．Check if the fan is operating 3．Check if there is enough ventilation clearance for AC motor drive．
18			IGBT overheating protection fault corrective action Return to the factory．
19	$\therefore 8900$		Capacitor module overheating fault corrective action Return to the factory．

20	FFin		Cooing fan doesn＇t turn properly corrective action Verify if the cooling fan is covered by dust and needs to be cleaned．Return to the factory if necessary．
21	O1		The AC motor drive detects excessive drive output current．The output current causes the motor drive to be overload．If the output current is 150% higher than the rated current，the motor drive can last for 60 seconds． corrective action 1．Check if the motor is overload． 2．Increase the output capacity of the motor drive．
22	Eri		The output current causes the motor to be overload．If the output current is 150% higher than the rated current，the motor can last for 60 seconds． corrective action 1．Check the setting of full－load current of motor （Pr．05－01）． 2．Check if motor 1 is overload，change to a higher power motor．
24			Motor overheating The AC motor drive detecting internal temperature exceeds the setting of Pr．06－27（PTC level）． corrective action 1．Make sure that the motor is not obstructed． 2．Ensure that the ambient temperature falls within the specified temperature range． 3．Change to a higher power motor．
26	日i	Fault ot1 Over Torque 1	
27	二心，	Fault ot2 Over Torque 2	The ot1 and ot2 fault codes will pop up when： the output current exceeds the setting at Pr06－06 ＜Over－torque Detection Level（OT1）＞and Pr06－09 ＜Over－torque Protection Level（OT2）， the output current lasts longer than the time setting at Pr06－07 and Pr06－10． －Pr06－05 or Pr06－08 is set to 2 or 4 ． corrective action 1．Check if the motor is overload． 2．Check if the setting of Pr05－01 IM $<$ Full－load current of the motor＞and Pr08－01 PM＜Full－load current of the motor＞are appropriate． 3．If necessary，increase the output capacity of the motor．
30	$E 1$		Internal EEPROM cannot be programmed． corrective action 1．Press＂RESET＂key to the factory setting． 2．Return to the factory．

31	E\%		Internal EEPROM cannot be read. corrective action 1. Press "RESET" key to the factory setting. 2. Return to the factory.
32	- ¢itid	Fault ${ }^{\text {HAND }}$ cdO Isum Sensor Err	Hardware failure in current detection corrective action Reboot the power. If fault code is still displayed on the keypad, return to the factory.
33	Eii		U-phase current detection error corrective action Reboot the power. If fault code is still displayed on the keypad, return to the factory.
34	$\therefore \boxed{010}$		V-phase current detection error corrective action Reboot the power. If fault code is still displayed on the keypad, return to the factory.
35	ニ \%		W-phase current detection error corrective action Reboot the power. If fault code is still displayed on the keypad, return to the factory.
36			CC (current clamp) corrective action Reboot the power. If fault code is still displayed on the keypad, return to the factory.
37	HII		OC hardware error corrective action Reboot the power. If fault code is still displayed on the keypad, return to the factory.
38	HIO		OV hardware error corrective action Reboot the power. If fault code is still displayed on the keypad, return to the factory.
39	Hİ		GFF hardware error corrective action Reboot the power. If fault code is still displayed on the keypad, return to the factory.
40	Fig		Auto-tuning error corrective action 1. Check cabling between drive and motor 2. Check if the motor capacity and the parameter setting are appropriate. Then try again.

42	Eigi		PG feedback error corrective action When PG feedback control is enabled；check if $\operatorname{Pr} 10-01$＜Encoder Pulse＞is set to 0 ．
43	EOE	Fault HAND PGGF2	PG feedback loss corrective action Check the wiring of the PG feedback．
44	COE	Fault PGF3 PG Fbk Over SPD	PG feedback over speed corrective action 1．Check the wiring of the PG feedback． 2．Check if the settings of PI gain and deceleration are correct（Pr10－05，Pr10－06）． 3．Return to the factory．
45	Ei8\％	Fault PGF4 PG Fbk Deviate	PG slip error corrective action 1．Check the wiring of the PG feedback． 2．Check if the settings of PI gain and deceleration are appropriate（Pr10－07，Pr10－08）． 3．Return to the factory．
49	$E E$	Fault ${ }^{\text {HAND }}$ EF External Fault	When Multi－Function Input Command（MI1 to MI8）is set to \＃10 EF input（Pr07－28）and when multi－function input terminals are triggered to close，the motor drive stop running． corrective action 1．Input EF（N．O．）on external terminal is closed to GND．Output U，V，W will be turned off． 2．Press the RESET button on the keypad to clear the fault signal．．
50	Ei	Fault EF1 Emergency Stop	Emergency Stop corrective action 1．When the multi－function input terminals MI1 to MI6 are set to emergency stop，the AC motor drive stops outputting $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and the motor coasts to stop． 2．Press RESET after fault has been cleared．
52	「ロロロ	Fault \quad HaND Pcod Password Error	Password error．After inputting three consecutive times the wrong password，the keypad will be locked． corrective action Power down and power back up again the motor drive to clear the lock and re－enter the correct password See Pr．00－07 and 00－08 for more information．
54	EEFi	Fault cE01 Comm Cmd Err	Illegal function code corrective action Check if the function code is correct（function code must be $03,06,10,63$ ）．

55	ロ「「ご		Illegal data address（ 00 H to 254 H ） The data address of $0 \times 2 \mathrm{XX}$ is between 0X2000～0X2005．Any address not within this range is a fault corrective action Check if the communication address is correct．
56	E「そう		Illegal data length The data length must be between 1 to 20 digits．Any length out of this range is a fault． corrective action Check if the data length is smaller than the minimum value or over the maximum value．
57	－E「H		Write value to read only communication address Communication addresses such as 0X21XX，0X22XX are read only．If any command is sent to these addresses，there will be a fault． corrective action Check if the communication address is correct．
58	EEIIN		Modbus communication time－out（Pr09－02～09－03） corrective action Check if the wiring for the communication is correct．
59	［F｜\％		Keypad transmission time－out corrective action 1．Check if the wiring for the communication is correct 2．Check if there is any wrong with the keypad
60	$E \%$		Brake resistor fault corrective action If the fault code is still displayed on the keypad after pressing＂RESET＂key，return to the factory．
64	ールロ		Mechanical brake fail，the feedback signal and the released signal are not consistent． corrective action 1．Check if the mechanical brake signal is correct． 2．Check if the detection time setting of mechanical brake（Pr．02－35）is correct．
65	Fに5		PG card hardware error corrective action 1．Check if the wiring of PG feedback is correct． 2．If fault code is still displayed on the keypad with correct PG feedback，please return to the factory．

66	KİF		Electromagnetic contactor error，the feedback signal and the released signal are not consistent． corrective action 1．Check if the signal of electromagnetic valve is correct． 2．Check if the setting of Pr．02－36 is correct．
67	ーロードィ		Motor phase loss． corrective action 1．Check cabling between drive and motor 2．Check if any output from the motor drive． 3．Return to the factory．
68	ERMF	Fault CANF CAN Bus Off	CAN Bus off corrective action 1．Check CAN Bus is wired correctly 2．Check PDO communication no time out
69		Reserved	
70		Reserved	
71		Reserved	
72	■上1		STO1～SCM1 internal hardware error detected．
73	『゙ロロロ	Fault PGcd PGcd Wrong Wire	PG cd wrong wiring corrective action Incorrect wiring for pin C＋，C－，D＋，D－．Refer to chapter 7－2 for correct wiring．
74	『ロ゙ール		PG absolute signal error corrective action 1．Check if the encoders absolute positions（ $\mathrm{C}+\mathrm{C}$－and D＋／D－are properly wired． 2．If the cables are properly wired but the fault code still displays on the keypad，return the motor drive to the factory．
75	FロロF		PG Z phase signal loss corrective action 1．Check if the encoder＇s Z phase signal and PG card are properly wired． 2．If the cables are properly wired but the fault code still displays on the keypad，return the motor drive to the factory．

76	G上ワ	HAND Fault STO Safe Torque Off	Safety Torque Off function is enabled while parameter $06-49$ is set to 0 or 2 ．
77	ぼくご		STO2～SCM2 internal hardware error detected．
78	G上゙ヨ		STO1～SCM1 and STO2～SCM2 internal hardware error detected．

15 Suggestions \& Error Corrections for Standard AC Motor Drives

15-1 Maintenance and Inspections
15-2 Greasy Dirt Problem
15-3 Fiber Dust Problem
15-4 Erosion Problem
15-5 Industrial Dust Problem
15-6 Wiring and Installation Problem
15-7 Multi-function Input/Output Terminals Problem

The AC motor drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The following faults are displayed as shown on the AC motor drive digital keypad display. The six most recent faults can be read from the digital keypad or communication.

The AC motor drive is made up by numerous components, such as electronic components, including IC, resistor, capacity, transistor, and cooling fan, relay, etc. These components can't be used permanently. They have limited-life even under normal operation. Preventive maintenance is required to operate this AC motor drive in its optimal condition, and to ensure a long life.

Check your AC motor drive regularly to ensure there are no abnormalities during operation and follows the precautions:

CAUTION
Wait 5 seconds after a fault has been cleared before performing reset via keypad of input terminal.
\square When the power is off after 5 minutes for $\leqq 22 \mathrm{~kW}$ models and 10 minutes for \geqq 30kW models, please confirm that the capacitors have fully discharged by measuring the voltage between + and -. The voltage between + and - should be less than 25 VDC .
च Only qualified personnel can install, wire and maintain drives. Please take off any metal objects, such as watches and rings, before operation. And only insulated tools are allowed.
\boxtimes Never reassemble internal components or wiring.
\square Make sure that installation environment comply with regulations without abnormal noise, vibration and smell.

15-1 Maintenance and Inspections

Before the check-up, always turn off the AC input power and remove the cover. Wait at least 10 minutes after all display lamps have gone out, and then confirm that the capacitors have fully discharged by measuring the voltage between DC+ and DC-. The voltage between DC+ and DC-should be less than 25VDC.

Ambient environment

Check Items	Methods and Criterion		Maintenance Period	
	Daily		Half Year	One Year
Check the ambient temperature, humidity, vibration and see if there are any dust, gas, oil or water drops	Visual inspection and measurement with equipment with standard specification	\bigcirc		
If there are any dangerous objects	Visual inspection	\bigcirc		

Voltage

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
Check if the voltage of main circuit and control circuit is correct	Measure with multimeter with standard specification	\bigcirc		

Digital Keypad Display

Check Items		Maintenance		
		Period		
		Daily	Half Year	One Year
Is the display clear for reading	Visual inspection	\bigcirc		
Any missing characters	Visual inspection	\bigcirc		

Mechanical parts

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any abnormal sound or vibration	Visual and aural inspection		\bigcirc	
If there are any loose screws	Tighten the screws		\bigcirc	
If any part is deformed or damaged	Visual inspection		\bigcirc	
If there is any color change by overheating	Visual inspection		\bigcirc	
If there is any dust or dirt	Visual inspection		\bigcirc	

Main circuit

Check Items	Methods and Criterion		Maintenance Period		
		Daily	Half Year	One Year	
If there are any loose or missing screws	Tighten or replace the screw				
If machine or insulator is deformed, cracked, damaged or with color change due to overheating or ageing	Visual inspection NOTE: Please ignore the color change of copper plate				
If there is any dust or dirt	Visual inspection		\bigcirc		

Terminals and wiring of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If the terminal or the plate is color change or deformation due to overheat	Visual inspection		\bigcirc	
If the insulator of wiring is damaged or color (hange	Visual inspection		\bigcirc	
If there is any damage	Visual inspection	\bigcirc		

DC capacity of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any leak of liquid, color change, crack or deformation	Visual inspection			
If the safety valve is not removed? If valve is inflated?	Visual inspection	\bigcirc		
Measure static capacity when required		\bigcirc		

Resistor of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any peculiar smell or insulator cracks due to overheat	Visual inspection, smell	\bigcirc		
If there is any disconnection	Visual inspection	\bigcirc		
If connection is damaged?	Measure with multimeter with standard specification	\bigcirc		

Transformer and reactor of main circuit

Check Items	Maintenance			
		Period		
		Daily	Half Year	One Year
If there is any abnormal vibration or peculiar smell	Visual, aural inspection and smell	O		

Magnetic contactor and relay of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there are any loose screws		Visual and aural inspection	\bigcirc	
If the contact works correctly	Visual inspection	\bigcirc		

Printed circuit board and connector of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half	One Year
If there are any loose screws and connectors	Tighten the screws and press the connectors firmly in place.		\bigcirc	
If there is any peculiar smell and color change	Visual and smell inspection		\bigcirc	
If there is any crack, damage, deformation or corrosion	Visual inspection		\bigcirc	
If there is any liquid is leaked or deformation in capacity	Visual inspection		\bigcirc	

Cooling fan of cooling system

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any abnormal sound or vibration	Visual, aural inspection and turn the fan with hand (turn off the power before operation) to see if it rotates smoothly		\bigcirc	
If there is any loose screw	Tighten the screw		\bigcirc	
If there is any color change due to overheat	Change fan		\bigcirc	

Ventilation channel of cooling system

Check Items	Maintenance Methods and Criterion	Period		
		Daily	Half Year	One Year
If there is any obstruction in the heat sink, air intake or air outlet	Visual inspection		\bigcirc	

\Rightarrow NOTE

Please use the neutral cloth for clean and use dust cleaner to remove dust when necessary.

15-2 Greasy Dirt Problem

Serious greasy dirt problems generally occur in processing industries such as machine tools, punching machines and so on. Please be aware of the possible damages that greasy oil may cause to your drive:

1. Electronic components that silt up with greasy oil may cause the drive to burn out or even explode.
2. Most greasy dirt contains corrosive substances that may damage the drive.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from dirt. Clean and remove greasy dirt regularly to prevent damage of the drive.

15-3 Fiber Dust Problem

Serious fiber dust problems generally occur in the textile industry. Please be aware of the possible damages that fiber may cause to your drives:

1. Fiber that accumulates or adheres to the fans will lead to poor ventilation and cause overheating problems.
2. Plant environments in the textile industry have higher degrees of humidity that may cause the drive to burn out, become damaged or explode due to wet fiber dust adhering to the devices.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from fiber dust. Clean and remove fiber dust regularly to prevent damage to the drive.

15-4 Erosion Problem

Erosion problems may occur if any fluids flow into the drives. Please be aware of the damages that erosion may cause to your drive.

1. Erosion of internal components may cause the drive to malfunction and possibility to explode.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from fluids. Clean the drive regularly to prevent erosion.

15-5 Industrial Dust Problem

Serious industrial dust pollution frequently occurs in stone processing plants, flour mills, cement plants, and so on. Please be aware of the possible damage that industrial dust may cause to your drives:

1. Dust accumulating on electronic components may cause overheating problem and shorten the service life of the drive.
2. Conductive dust may damage the circuit board and may even cause the drive to explode.

Solution:

Install the AC motor drive in a standard cabinet and cover the drive with a dust cover. Clean the cabinet and ventilation hole regularly for good ventilation.

15-6 Wiring and Installation Problem

When wiring the drive, the most common problem is wrong wire installation or poor wiring. Please be aware of the possible damages that poor wiring may cause to your drives:

1. Screws are not fully fastened. Occurrence of sparks as impedance increases.
2. If a customer has opened the drive and modified the internal circuit board, the internal components may have been damaged.

Solution:

Ensure all screws are fastened when installing the AC motor drive. If the AC motor drive functions abnormally, send it back to the repair station. DO NOT try to reassemble the internal components or wire.

15-7 Multi-function Input/Output Terminals Problem

Multi-function input/output terminal errors are generally caused by over usage of terminals and not following specifications. Please be aware of the possible damages that errors on multi-function input/output terminals may cause to your drives:

1. Input/output circuit may burns out when the terminal usage exceeds its limit.

Solution:

Refer to the user manual for multi-function input output terminals usage and follow the specified voltage and current. DO NOT exceed the specification limits.

16 Functions of Safety Torque Off*

(*Safety Torque Off = STO)
16-1 Failure Rate of the drive's safety function

16-2 Description of STO's Functions

16-3 Wiring diagrams

16-4 Related Parameters

16-5 Description of Operating Sequence Diagrams
16-6 Error codes related to STO

16-1 Failure Rate of the drive's safety function

Item	Definition	Standard	Performance
SFF	Safe Failure Fraction	IEC61508	Channel 1: 80.08\% Channel 2: 68.91\%
HFT (Type A subsystem)	Hardware Fault Tolerance	IEC61508	1
SIL	Safety Integrity Level	IEC61508	SIL 2
		IEC62061	SILCL 2
PFH	Average frequency of dangerous failure [h-1]	IEC61508	9.56×10^{-10}
PFD ${ }_{\text {av }}$	Probability of Dangerous Failure on Demand	IEC61508	4.18×10^{-6}
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
$\mathrm{MTTF}_{\mathrm{d}}$	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

16-2 Description of STO's Functions

The purpose of the STO function is to cut off the power supply of the motor to prevent the production of torque force. The STO function is run by two independent hardware to control the drive signals emitted by the motor's current then to cut off motor drive's power module output in order to stop safely the motor drive.

The terminal functions is described in the table below,

Table 1: Description of Terminal Functions

Signal	Channel	Status of Photocupler			
STO signal	STO1~SCM1	ON(High)	ON(High)	OFF(Low)	OFF(Low)
	STO2~SCM2	ON(High)	OFF(Low)	ON(Low)	OFF(Low)
Driver Output Status	Ready	STL2 mode (Torque output off)	STL1 mode (Torque output off)	STO mode (Torque Output Off)	

- STO is Safe Torque Off
- STL1~STL3 means STO hardware abnormal

■ STO1~SCM1 ON (High): means STO1~SCM1has connect to a +24VDC power supply.

- STO2~SCM2 ON (High): means STO2~SCM2 has connect to a +24 V power supply.

■ STO1~SCM1 OFF (Low): means STO1~SCM1hasn't connect to a +24VDC power supply.

- STO2~SCM2 OFF (Low): means STO2~SCM2hasn't connect to a +24VDC power supply.

16-3 Wiring diagrams

16-3-1 Internal Safety Circuit diagram as shown below:

16-3-2 As shown in the diagram D below, the factory setting of terminals +24V-STO1-STO2 and terminals SCM1-SCM2-DCM is short-circuiting.

16-3-3 Control Circuit Wiring Diagram

1. Remove the short-circuit between E24V-STO1-STO2 and DCM-SCM1-SCM2.
2. The wiring diagram is as shown below. The ESTOP must be closed during the normal situation so that the motor drive will be able to run.
3. At the STO mode, switch on ESTOP, the motor drive will stop outputting and the keypad panel will display STO.

16-4 Related Parameters

[10. When Pr06-49=0, STO alarm is latched which means once the cause of the alarm is cleared, a Reset command is required to clear the STO alarm.
When Pr06-49=1, STO alarm is NOT latched which means once the cause of the alarm is cleared, the STO alarm will stop automatically.
[0. When in STL1~STL3 mode, STO alarm is latched and Pr06-49 cannot be set.

Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	MO2	MO1	R2A	R1A	MRA	RA

(1) STO Output Error factory setting: Pr02-15(MO1 = 42 SO Logic Output A). Set up Pr02-23 <Multi-output direction> to choose Logic Output B.

Status of the Motor Drive	Logic Output A $(02-15=42)$	Logic Output B $(02-15=42)$ $(02-23=16)$
	Broken circuit (Open)	Short circuit (Close)
	Short circuit (Close)	Broken circuit (Open)
STL1~STL3	Short circuit Close)	Broken circuit(Open)

16-5 Description of Operating Sequence Diagrams

16-5-1 Normal Operation Status

As shown in Figure 01: When the STO1~SCM1 and STO2~SCM2= ON (safety function is not required), the motor drive will execute "Operating" or "Output Stop" according to the RUN/STOP command.

Figure 01

16-5-2 Pr06-49=0, STO alarm Latch

As shown in Figure 02, when both STO1~SCM1 and STO2~SCM2 channels are turned OFF (safety function is required) during operation, the STO function will be enabled and the motor drive will stop output regardless what kind of command is.

Figure 02
16-5-3 Pr06-49=1, STO alarm no Latch

Figure 03

16-5-4 STL1

Figure 04

16-5-4 STL2

Figure 05

16-6 Fault codes related to STO

Error Code	Reading	Description
$\begin{gathered} 72 \\ (S T L 1) \end{gathered}$	Safety Torque Off (STO)	STO1~SCM1 internal hardware error detected.
$\begin{gathered} 76 \\ \text { (STO) } \end{gathered}$	Safety torque output stops(STO)	Safety Torque Off function is enabled while parameter 06-49 is set to 0 or 2.
$\begin{gathered} 77 \\ \text { (STL2) } \end{gathered}$	Safety torque loss 2 (STL2)	STO2~SCM2 internal hardware error detected.
$\begin{gathered} 78 \\ (\mathrm{STL} 3) \end{gathered}$	Safety torque loss 3 (STL3)	STO1~SCM1 and STO2~SCM2 internal hardware error detected.

Appendix A:

AC Motor Drives EMC Standard Installation Guide

EMC Compliance Practice

Preface

When an AC motor drive is installed in a noisy environment, radiated and/or conducted noise via signal and power cables can interfere with the correct functioning, cause errors or even damage to the drive. To prevent this, some AC motor drives have an enhanced noise resistance but the results are limited and it is not economical. Therefore, an effective method would be finding the cause of the noise and use the right solution to achieve "no emission, no transmission and no reception of noise". All three solutions should be applied.

Finding the Noise

- Ascertain whether the error is caused by noise.
- Find the source of the noise and its transmission path.
- Confirm the signal and the source of noise

Solutions

- Grounding
- Shielding
- Filtering

Table of Contents

Preface i
Table of Contents ii
Chapter 1 Introduction 1
1.1 What is EMC 1
1.2 EMC for AC Motor Drive 1
Chapter 2 How to prevent EMI 2
2.1 Types of EMI: common-mode and differential mode noise 2
2.2 How does EMI transmit? (Noise transmission) 2
Chapter 3 Solution to EMI: Grounding 4
3.1 Protective Grounding \& Functional Grounding 4
3.2 Ground Loops 5
3.3 Earthing Systems 5
Chapter 4 Solution to EMI: Shielding 9
4.1 What is Shielding? 9
4.2 How to Reduce EMI by Shielding? 10
Chapter 5 Solution to EMI: Filter 12
5.1 Filter 12
5.2 Harmonic Interference 14

Chapter 1 Introduction

1.1 What is EMC?

Electromagnetic Compatibility (EMC) is the ability of an electrical device to function properly in electromagnetic environments. It does not emit electromagnetic noise to surrounding equipment and is immune to interference from surrounding equipment. The goal is to achieve high immunity and low emission; these two properties define the quality of EMC. In general, electrical devices react to high and low frequency phenomena. High frequency phenomena are electrostatic discharge (ESD); pulse interference; radiated electromagnetic field; and conducted high frequency electrical surge. Low frequency phenomena refer to mains power harmonics and imbalance.

The standard emission and immunity levels for compliance depend on the installation location of the drive. A Power Drive System (PDS) is installed in an industrial or domestic environment. A PDS in a domestic environment must have lower emission levels and is allowed to have lower immunity levels. A PDS in an industrial environment is allowed to have higher emission levels but must have more severe immunity levels.

1.2 EMC for AC Motor Drive

When an AC motor drive is put into operation, harmonic signal will occur at the AC drive's power input and output side. It creates a certain level of electromagnetic interference to the surrounding electrical devices and the mains power network. An AC motor dive is usually applied in industrial environments with a strong electromagnetic interference. Under such conditions, an AC drive could disturb or be disturbed.

Delta's AC motor drives are designed for EMC and comply with EMC standard EN61800-3 2004. Installing the AC motor drive accurately will decrease EMI influences and ensure long term stability of the electricity system. It is strongly suggested to follow Delta's user manual for wiring and grounding. If any difficulties or problems arise, please follow the instructions and measures as indicated in this EMC Standard Installation Guide.

Chapter 2 How to prevent EMI

2.1 Types of EMI: Common-mode and differential-mode noise

The electromagnetic noise of an AC motor drive can be distinguished into common-mode and differential-mode noise. Differential-mode noise is caused by the stray capacitance between the conducting wires and common-mode noise is caused by the common-mode coupling current path created by the stray capacitance between the conducting wires and ground.

Basically, differential-mode noise has a greater impact to the AC motor drive and common-mode noise has a greater impact to high-sensitivity electronic devices. An excessive amount of differentialmode noise may trigger the circuit protection system of the AC motor drive. Common-mode noise affects peripheral electronic devices via the common ground connection.

EMC problems can be more serious when the following conditions apply:

- When a large horsepower AC motor drive is connected to a large horsepower motor.
- The AC motor drive's operation voltage increases.
- Fast switching of the IGBTs.
- When a long cable is used to connect the motor to the AC motor drive.

2.2 How does EMI transmit? (Noise transmission path)

Noise disturbs peripheral high-sensitivity electrical devices/systems via conduction and radiation, their transmission paths are shown hereafter:

1. Noise current in the unshielded power cable is conducted to ground via stray capacitances into a common-mode voltage. Whether or not other modules are capable to resist this common-mode noise depends on their Common-Mode Rejection Ratio (CMRR), as shown in the following figure.

2. Common-mode noise in the power cable is transmitted through the stray capacitance and coupled into the adjacent signal cable, as shown in Figure 2. Several methods can be applied to reduce the effect of this common-mode noise; for example, shield the power cable and/or the signal cables, separate the power and signal cables, take the input and output side of the signal cable and twist them together to balance out the stray capacitance, let power cables and signal cables cross at 90°, etc.

Ground
3. Common-mode noise is coupled via the power cable to other power systems then the cable of such a power system is coupled to the transmission system, as shown in Figure 3.

Ground
4. The common-mode noise of an unshielded power cable is transmitted to the ground via the stray capacitance. Since both shielded wire and unshielded wire are connected to a common ground, other systems can be interfered with by the common-mode noise that is transmitted from the ground back to the system via the shield. See Figure 4.

5. When excessive pulse modulated currents pass through an un-grounded $A C$ drive cable, it acts as an antenna and creates radiated interference.

Chapter 3 Solution to EMI: Grounding

The leakage current of an electronic equipment is conducted to ground via the grounding wire and the ground electrode. According to Ohm's law, potential differences may arise when the electrode's ground and the ground's ground resistance are different.

According to Ohm's law, the earth resistance for electrode and the ground are different,

 in this case potential differences may arise.
3.1 Protective Grounding \& Functional Grounding

Please carefully read the following instruction if two types of grounding are applied at the same time.

Protective grounding is applied outside buildings and must have low resistance. On the other hand, functional grounding can be applied inside buildings and must have low impedance.

The goal of EMC is to avoid any interference effects. Grounding for EMC can be distinguished by frequency. For frequencies lower than 10 kHz , a single-point ground system should be used and for frequencies higher than 10 kHz , a multiple point ground system should be used.

- Single Point Grounding: all signal grounds of all IT equipment are connected in series to form a single reference point. This point can be grounded directly to earth; to the designated grounding point or to the safety point that is already grounded.
- Multiple Point Grounding: all signals of all IT equipment are grounded independently.
- Hybrid Grounding: this type of grounding behaves differently for low and high frequencies. When two pieces of IT equipment (A and B) are connected via a shielded cable, one end is connected directly to ground while the other end is connected to ground via a capacitor. This type of grounding system fulfils the criteria for high and low frequency grounding.
- Floating grounding: the signals of all IT equipment are isolated from each other and are not grounded.

DC current flows evenly throughout the conductor section. But AC current flows towards the conductor's surface as frequency increases; this is called the "skin effect". It causes the effective crosssection area to be reduced with increasing frequency. Therefore it is suggested to increase the effective ground cross-section area for high frequencies by replacing pigtail grounding by braided conductors or strip conductors. Refer to the following figure.

This is why a thick short ground wire must be implemented for connecting to the common grounding path or the ground busbar. Especially when a controller (e.g. PLC) is connected to an AC motor drive, it must be grounded by a short and thick conducting wire. It is suggested to use a flat braided conductor (ex: metal mesh) with a lower impedance at high frequencies.

If the grounding wire is too long, its inductance may interfere structure of the building or the control cabinet and form mutual inductance and stray capacitance. As shown in the following figure, a long grounding wire could become a vertical antenna and turn into a source of noise.

3.2 Ground Loops

A ground loop occurs when the pieces of equipment are connected to more than one grounding path. In this case, the ground current may return to the grounding electrode via more than one path. There are three methods to prevent ground loops

1. Use a common power circuit
2. Single point grounding
3. Isolate signals, e.g. by photocouplers

In order to avoid "Common Mode Noise", please use parallel wires or twisted pair wiring. Follow this rule and also avoid long wires, it is suggested to place the two wires as close to each other as possible.

3.3 Earthing Systems

The international standard IEC60364 distinguishes three different earthing system categories, using the two-letter codes TN, TT, IT.

- The first letter indicates the type of earthing for the power supply equipment (generator or transformer).
T: One or more points of the power supply equipment are connected directly to the same earthing point.
I: Either no point is connected to earth (isolated) or it is connected to earth via high impedance.
- The second letter indicates the connection between earth and the power supply equipment.

T: Connected directly to earth (This earthing point is separate from other earthing points in the power supply system.)
\mathbf{N} : Connected to earth via the conductor that is provided by the power supply system

- The third and forth letter indicate the location of the earth conductor.

S: Neutral and earth conductors are separate
C: Neutral and earth are combined into a single conductor

TN system

TN: The neutral point of the low voltage transformer or generator is earthed, usually the star point in a three-phase system. The body of the electrical device is connected to earth via this earth connection at the transformer.
protective earth $(P E)$: The conductor that connects the exposed metallic parts of the consumer.
neutral (N): The conductor that connects to the start point in a 3-phase system or that carries the return current in a single phase system.

TN-S system

TN-S: PE and N are two separate conductors that are combined together only near the power source (transformer or generator). It is the same as a three-phase 5-wire system.

TN-C system

TN-C: PE and N are two separate conductors in an electrical installation similar to a three-phase 5wire system, but near the power side, PE and N are combined into a PEN conductor similar to a three-phase 4 wire system.

TN-C-S system

TN-C-S: A combined earth and neutral system (PEN conductor) is used in certain systems but eventually split up into two separate conductors PE and N. A typical application of combined PEN conductor is from the substation to the building but within the building PEN is separated into the PE and N conductors. Direct connection of PE and N conductors to many earthing points at different locations in the field will reduce the risk of broken neutrals. Therefore this application is also known as protective multiple earthing (PME) in the UK or as multiple earthed neutral (MEN) in Australia

TT system

TT: The neutral point (N) of the low voltage transformer and the equipment frames (PE) are connected to a separate earthing point. The Neutral (N) of the transformer and electrical equipment are connected.

IT system

IT: The neutral point of the transformer and electrical equipment are not earthed, only the equipment frames PE are earthed.
In the IT network, the power distribution system Neutral is either not connected to earth or is earthed via high impedance. In such a system, an insulated monitoring device is used for impedance monitoring. A built-in filter should be disconnected by the RFI-jumper and an external filter should not be installed

Gererator or transformer

when the AC motor drive or the AC servo motor drive is connected to an IT system.

Criteria for earthing system and EMC

	TN-S	TN-C	TT	IT
Safety of Personnel	Good	Good	Good	Good
	Continuity of the PE conductor must be ensured throughout the installation	Continuity of the PE conductor must be ensured throughout the installation	RCD is mandatory	Continuity of the PE conductor must be ensured throughout the installation

Appendix A: EMC Standard Installation Guide

Safety of property	Poor High fault current (around 1kA)	Poor High fault current (around 1kA)	Good Medium fault current (< a few dozen amperes)	Good Low current at the first fault (< a few dozen $m A$) but high current at the second fault
Availability of energy	Good	Good	Good	Excellent
EMC behavior	Excellent Few equipotential Problems: - Need to handle the high leaking currents problem of the device - High fault current (transient disturbances)	\quadPoor (prohibited)- Neutral and PEare the same- Circulation ofdisturbancecurrents inexposedconductive parts(high magnetic-field radiation)- High faultcurrents(transientdisturbances)	Good - Over-voltage risk - Equipotential Problems: - Need to handle the high leaking currents problem of the device - RCD (Residualcurrent device)	Poor (should be avoided) - Over-voltage risk - Common-mode filters and surge arrestors must handle the phase to phase voltage. - RCDs subject to nuisance tripping when commonmode capacitors are present - Equivalent to TN system for second fault

Chapter 4 Solution to EMI: Shielding

4.1 What is Shielding?

Electrostatic shielding is used to isolate equipment so that it will not create electromagnetic field interference or be influenced by an external electromagnetic field. A conductive material is used for electrostatic shielding to achieve this isolation.

A Faraday cage can be made from a mesh of metal or a conductive material. One characteristic of metal is that it is highly conductive and not electrostatic, which offers shielding and prevents interference by external electrical fields. Metal with its high conductivity protects the internal devices from high voltages-no voltage will enter the cage even when the cage is experiencing a high current. In addition, electromagnetic fields can also pass through the Faraday cage without causing any disturbance.

Electromagnetic shielding is applied to some electrical devices and measurement equipment for the purpose of blocking interference. Examples of shielding include:

- earth high-voltage indoor equipment using a metal frame or a high-density metal mesh
- shielding a power transformer is achieved by wrapping a metal sheet between the primary and secondary windings or by adding an enamel wire to the winding wire which is then earthed.
- a shielding coating, which is made of metal mesh or conductive fibers to provide effective protection for the workers who work in a high-voltage environment.

In the picture below, the radio appears to be not fully covered by metal but if the conductivity of the metal is high, radio waves are completely blocked and the radio will not receive any signal.

Mobile phone connections are also established through the transmission of radio waves. This is why the mobile phone reception is often cut off when we walk into an elevator. The metal walls of the elevator create the same shielding effect just as if we had entered a metal cage. Another example is a microwave oven. The microwave door may seem transparent in visible light, but the density of the metal mesh in the microwave door blocks the electromagnetic waves. A higher density of the metal mesh offers better shielding.

4.2 How to reduce EMI by Shielding?

Iron and other metals are high conductivity materials that provide effective shielding at extremely low frequencies. But conductivity will decrease as:

1. High frequency signals are applied to the conductor.
2. Equipment is located in a strong magnetic field
3. The shielding frame is forced into a specific form by machines.

It is difficult to select a suitable high-conductivity material for shielding without the help from a shielding material supplier or a related EMI institution.

Metallic Shielding Effectiveness

Shielding Effectiveness (SE) is used to assess the applicability of the shielding shell. The formula is:

SEdB $=A+R+B$ (Measures in $d B$)

```
where A= Absorption loss (dB)
                                    R= Reflection loss (dB)
                                    B= Correction factor (dB) (for multiple reflections in thin
                                    shields)
```

The absorption loss refers to the amount of energy loss as the electromagnetic wave travels through the shield. The formula is:
$A d B=1.314(f \sigma \mu) 1 / 2 t$
where $\mathrm{f}=$ frequency (MHz)
$\mu=$ permeability relative to copper $\sigma=$ conductivity relative to copper $t=$ thickness of the shield in centimeters

The reflection loss depends on the source of the electromagnetic wave and the distance from that source. For a rod or straight wire antenna, the wave impedance increases as it moves closer to the source and decreases as it moves away from the source until it reaches the plane wave impedance (377) and shows no change. If the wave source is a small wire loop, the magnetic field is dominant and the wave impedance decreases as it moves closer to the source and increases as it moves away from the source; but it levels out at 377 when the distance exceeds one-sixth of the wavelength.

Electrical Cabinet Design

In a high frequency electric field, shielding can be achieved by painting a thin layer of conductive metal on the enclosure or on the internal lining material. However, the coating must be thorough and all parts should be properly covered without any seams or gaps (just like a Faraday cage). That is only the ideal. Making a seamless shielding shell is practically impossible since the cage is composed of metal parts. In some conditions, it is necessary to drill holes in the shielding enclosure for installation of accessories (like optional cards and other devices).

1. If the metallic components are properly welded using sophisticated welding technology to form an electrical cabinet, deformation during usage is unlikely to occur. But if the electrical cabinet is assembled with screws, the protective insulating layer under the screw must be properly removed before assembly to achieve the greatest conductivity and best shielding.
2. Drilling holes for the installation of wires in the electrical cabinet lowers the shielding effectiveness and increases the chance of electric waves leaking through the openings and emitting interference. We recommend that the drilled holes are as narrow as possible. When the wiring holes are not used, properly cover the holes with metal plates or metal covers. The paint or the coating of the metal plate and metal cover should be thoroughly removed to ensure a metal-to-metal contact or a conductive gasket should be installed.
3. Install industrial conductive gaskets to completely seal the electrical cabinet and the cabinet door without gaps. If conductive gaskets are too costly, please screw the cabinet door to the electrical cabinet with a short distance between the screws.
4. Reserve a grounding terminal on the electrical cabinet door. This grounding terminal shall not be painted. If the paint already exists, please remove the paint before grounding.

Electrical wires and cables

Shielded Twisted Pair (STP) is a type of cable where two insulated copper wires are twisted together with a metal mesh surrounding the twisted pair that forms the electromagnetic shielding and can also be used for grounding.

The individual electrical wires and complete cable are surrounded by (synthetic) rubber that provides insulation and also protects against damage.

There are two types of electrical cables: high voltage and low voltage. The high voltage cable differs from the low voltage cable in that it has an additional insulation layer called the dielectric insulator within the plastic sleeve. The dielectric insulator is the most important component in insulation. The low voltage cable is usually only filled with a soft polymer material for keeping the internal copper wire in place.

The shield has two functions.

1. To shield the electrical wire and cable.
A. Electric currents increase as power flows through the power cable and generate an electrical field. Such interference can be suppressed inside the cable by shielding the power cables or the electrical wires.
B. To form a protective earthing. When the cable core is damaged, the leakage current will flow via the shield to ground
2. To protect the cable. A power cable used for the computer control purpose generates only relatively low amount of current inside the cable. Such power cable will not become the source of interferences but has great possibility to be interfered by the surrounding electrical devices.

Chapter 5 Solution to EMI: Filter

5.1 Filter

Electromagnetic interference is transmitted in two ways, by radiation and by conduction. The most effective and economical method of reducing radiated interference is to use shielding and of reducing conducted interference is to use an electromagnetic filter.

Noise interference can be divided into two categories: high frequency ($150 \mathrm{kHz} \sim 300 \mathrm{MHz}$) and low frequency ($100 \mathrm{~Hz} \sim 3000 \mathrm{~Hz}$). High-frequency noise fades more over distance and has a shorter wavelength, while low-frequency noise fades less over distance and has a longer wave-length. Both types of interference are transmitted through power cables and power leads, affecting the power supply side.

High-frequency interference at the power side can be eliminated or attenuated by mounting a filter. The filter consists of coils and capacitors. Some drives do not have a built-in filter, in which case the installation of an external option filter is required. The drawing below shows a standard filter diagram:

1: Differential Mode Section 2: Common Mode Section

A filter is composed of a Differential Mode section (to eliminate noise below 150 kHz) and a Common Mode section (to eliminate noise above 150 kHz). For high-frequency noise, the inductor acts as a high impedance to form an open circuit and the capacitor acts as a low impedance to form a short circuit. Proper design and dimensioning of inductors and capacitors give a resonant circuit to absorb harmonic currents. Capacitor Cy is earthed to lead the harmonic currents to the ground.

External Filter

The filter and the AC drive should be installed in the control cabinet or on the mounting plate that is earthed to ground. The motor cable must be shielded and as short as possible. Please use the filters recommended by Delta to ensure compliance with EMC standards.

AC Motor Drives with Built-in Filter

1. Since interferences are suppressed by installing an earthed capacitor in the filter, the amount of current to ground (leakage current) could result in electric shocks to personnel or the power system. Please be aware of this problem.
2. Since the leakage current to ground can be high, it is crucial to implement protective earthing to prevent electrical shocks.

Filter Installation (With and Without)

<15m@60Hz with EMI Filter>

<15m@60Hz without EMI Filter>

Zero Phase Reactor (Choke)

Interferences can also be suppressed by installing a zero phase reactor at the power supply side and/or the AC Motor Drive's output, depending on where the interference is. Since currents are large at the power input and the AC Motor Drive's output, please carefully select the magnetic core with suitable current handling capability. An ideal magnetic material for large currents is compound magnetic powder. It has a higher current handling capability and higher impedance compared to pure metallic magnetic cores. It is therefore suitable to implement in a high frequency environment. The impedance can also be enhanced by increasing the turn ratio.

Zero Phase Reactor Installation

There are two installation methods, depending on the size of the zero phase reactor and the motor cable length.

1. Wind the motor cable through the middle of a zero-phase reactor 4 times. Place the reactor and the AC Motor Drive as close to each other as possible.

2. Place all wires through the middle of four zero-phase reactors without winding.

Analog Input Signals

If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and a ferrite core as indicated in the following diagram.
Wind the wires around the core in same direction for 3 times or more.

5.2 Harmonic Interference

The AC motor drive's input current is non-linear, the input rectifier generates harmonics. Harmonics must be limited to within a certain range to avoid impact the mains power and to avoid current distortion to ensure surrounding devices are not influenced. An AC Motor Drive with built-in DC reactor suppresses harmonic currents (Total Harmonic Current Distortion THID) effectively and therefore reduces the harmonic voltage peaks (Total Harmonic Voltage Distortion).

Harmonic Current at the Power Supply Side

Suppression of Harmonic Currents

When a large portion of lower order harmonic currents ($5^{\text {th }}, 7^{\text {th }}, 11^{\text {th }}$, etc) occur at the power input, surrounding devices will be disturbed and the power factor will be low as a result of reactive power. Installing a reactor at the AC Motor Drive's input effectively suppresses lower order harmonic currents.

AC Reactor

Installed in series with the power supply and is effective in reducing low order current harmonics. Features of an AC reactor include:

1. Reduces the harmonic currents to the AC Motor Drive and increases the impedance of the power supply.
2. Absorbs interferences generated by surrounding devices (such as surge voltages, currents, and mains surge voltages) and reduce their effect on the AC Motor Drive.
3. Increases the power factor.

DC Reactor

A DC-Reactor is installed between the rectifier and the DC-bus capacitor to suppress harmonic currents and to achieve a higher power factor.

Current Wave Diagrams

[^0]: ## 目 NOTE

 $R B$ and $R C$ are the multi-function output terminals.

[^1]: *Assumes operation at the rated output. Input current rating varies depending on the power supply, input reactor, wiring connections and power supply impedance.

[^2]: Settings 00~1439 min

[^3]: Settings 0659

