

Precaution

- Warning! Please comply with safety precautions in the manual. Failure to do so may cause controller or peripheral products malfunction, or even result in serious harm such as fire, electrical injury or other damages.
- DANGER! Caution! Electric Shock! Do not touch the AC terminals while the power is supplied to the controller to prevent electric shock. Make sure power is disconnected while checking the unit inside.

- This controller is not furnished with a power switch or fuse, therefore a switch or circuit-breaker should be provided in the application system including this unit. The switch or circuit-breaker should be nearby and easily reached by operator, and must have the mark disconnecting means for this unit.
- 1. Always use recommended solder-less terminals: When integrated into a temperature control system, the maximum ambient temperature is 50 degree C. Fork terminal with isolation (M3 screw, width is 5.8 mm). Make sure all wires are connected to the correct polarity of terminals.
- 2. Do not allow dust or foreign objects to fall inside the controller to prevent it from malfunctioning. Never modify or disassemble the controller. Do not connect anything to the "No used" terminals.
- To prevent interference, keep away from high voltage and high frequency when installing. Do not install and/or use the controller in places subject to:
 - (a) Dust or corrosive gases and liquid; (b) High humidity and high radiation; (c) Vibration and shock;
- 4. Power must be off when wiring and replacing a temperature sensor.
- 5. Be sure to use compensating wires that match the thermocouple types when extending or connecting the thermocouple wires.
- 6. Please use wires with resistance when extending or connecting a platinum resistance thermometer (RTD).
- 7. Please keep the wire as short as possible when wiring a platinum resistance thermometer (RTD) to the controller and please route power wires as far as possible from load wires to prevent interference and induced noise.
- 8. This controller is an open-type unit and must be placed in an enclosure away from high temperature, humidity, dripping water, corrosive materials, airborne dust, and electric shock or vibration.
- 9. Make sure power cables and signals from instruments are all installed properly before energizing the controller, otherwise serious damage may occur.
- 10. Do not touch the terminals in the controller or try to repair the controller when power is on, in order to prevent electric shock.
- 11. Wait at least one minute after power is disconnected to allow capacitors to discharge, and please do not touch any internal circuit within this period.
- 12. When maintaining the controller, please turn off the power first and use a dry cloth to clean the surface. Do not open the enclosure or touch the internal circuit to avoid circuit destruction or malfunction.
- 13. Do not use any sharp objects to press the operation buttons. It may result in button surface damage or even electrical injury when accidentally access to internal circuit.
- 14. Measured current: When measuring current, use an external current transformer (CT).
- 15. When using this CT device, note that the current transformer must not be under an open circuit.
- 16. When using this CT device, make sure the powered bus on the secondary side of the current transformer has been locked and secured to the device to prevent the bus falling during the use, which could damage the device.
- 17. When using the current transformer with the device, use the transformer that is compliant with the IEC-61010-2-032 standard to ensure safety.
- 18. When measuring current, a current transformer must be used with the device.
- 19. Use copper conductors only.

Przeznaczenie produktu

Seria DT3 to nowy regulator temperatury charakteryzujący się bardzo dobrym stosunkiem ceny do jakości. Doskonale redukuje koszty i czas i poprawia funkcje systemu regulacji temperatury. Dzięki wyświetlaczowi LCD wysokiej rozdzielczości, operator może z łatwością monitorować temperatury w każdych warunkach

- Panel LCD wysokiej rozdzielczości: wysoki kontrast i dostosowana grafika dla lepszej czytelności i prostszej obsługi.
- Prędkość próbkowania 100ms: wysoka prędkość próbkowania dla pomiaru temperatury i szybkiej odpowiedzi wyjścia, co skutkuje przystosowaniem do kontroli o wysokiej dokładności.
- Definiowane przez użytkownika przyciski i modułowa budowa.
- Zgodność z międzynarodowymi normami bezpieczeństwa CE.

Struktura regulatora

DT3 pobiera z czujnika wartość temperatury obiektu regulacji i przesyła dane do elektronicznego procesora. Po przeliczeniach, wg ustalonego cyklu pracy wystawiane jest proporcjonalna wartość sygnału, za pośrednictwem odpowiedniego typu wyjścia, np. przekaźnika, inpulsowego wyjścia napięciowego lub wyjścia prądowego. Poprzez zasilenie urządzenia ogrzewającego i podniesienie temperatury, DT3 może kontrolować wartość temperatury w zadanym zakresie.

Wyświetlacz LED i przyciski

PV: Present value SV: Set value °C,°F: Celsius or Fahrenheit LED ALM1~ALM3: Alarm output LED AT: Auto-tuning LED MAN: Manual mode LED OUT1/OUT2: Output LED REMOTE: Remote control LED EV: EVENT LED F1 F2 : Self-defined function keys M M: Select" and "set up" keys V A : Set value tuning keys

■ Туру

DT31234-5678

Seria DT3	DT3: Delta 3 seria regulatora temperatury				
	20: 4848 1/16 DIN 48×48mm	40: 4896 1/8 DIN 48×96mm			
Rozmiar (Szerokość×Wysokość)	30: 7272 72×72mm	60: 9696 1/4 DIN 96×96mm			
Typ pierwszego wyjścia	R: Przekaźnik, 250VAC, 5A V: Wyjście napięciowe impulsowe, 12VDC -10%~+20% C: Wyjście prądowe, 4 ~ 20mA L: Liniowe wyjście napięciowe 0 ~ 10Vdc				
Zasilanie	A: 80 ~ 260VAC				
	D: 24VAC and 24VAC (DT330 7272 brak modelu)				
Typ drugiego wyjścia	0: brak R: Przekaźnik, 250VAC, 5A V: Wyjście napięciowe impulsowe, 12VDC	c -10%~+20%			
	C: Wyjście prądowe 4 ~ 20mA L: Liniowe wyjście napięciowe 0 ~ 10Vdc				

6 Wejście EVENT / funkcja CT (opcjonalne)	1 0: Brak, 1: wejście Event 3, 2: RS-485
Wejście EVENT / funkcja CT (opcjonalne)	2 0: Brak, 1: wejście Event 2, 2: wejście pomiarowe CT 2, 3: retransmisja wyjścia
8 Wejście EVENT / funkcja CT (opcjonalne)	3 0: Brak, 1: wejście Event 1, 2: wejście pomiarowe CT 1, 3: zdalne ustawienie wejścia

Specyfikacja

Napięcie wejściowe	80 ~ 260Vac 50/60Hz; 24Vac 50/60Hz ±10%; 24 Vdc ±10%				
Pobór mocy	8VA max.				
Metoda wyświetlania	Wyświetlacz LCD. Wartość aktualna (PV): kolor żólty, wartość zadana (SV): kolor zielony				
	Termopary: K, J, T, E, N, R, S, B, L, U, TXK				
Typ czujnika	3-przewodowy rezystor platnowy RTD: Pt100, JPt100				
	Czujniki rezystancyjne: Cu50, Ni120				
	Wejście analogowe: 0 ~ 5Vdc, 0 ~ 10Vdc, 0 ~ 20mA, 4 ~ 20mA, 0 ~ 50mVdc				
Tryb sterowania	PID, PID programowalny (Ramp/Soak control), FUZZY, samotuningujący, ręczny, ON/OFF				
	Przekaźnik: 250VAC, 5A				
Rodzojo unićć	Napięciowe wyjście impulsowe: 12VDC, Maksymalny prąd: 40mA				
Rouzaje wyjsc	Wyjście prądowe: DC 4 ~ 20mA (maksymalna rezystancja: 500 Ω)				
	Analogowe wyjście napięciowe: 0 ~ 10VDC				
Typ wyjścia alarmu	Przekaźnik: 250VAC, 3A				
Dokładność wyświetlania	0 lub 1 cyfra na prawo od kropki dziesiętnej (do wyboru)				
Próbkowanie	Wejście napięciowe: 0.1s; Termopara lub rezystor platynowy RTD: 0.1s				
Wytrzamałość na wibracje	10~55Hz, 10m/s ² przez 10min, we wszystkich kierunkach				
Wytrzymałość na wstrząsy	do 300m/s ² , 3 razy w każdej z 3 osi, w 6 kierunkach				
Temperatura otoczenia	0°C ~ +50°C				
Temperatura przechowywania	-20°C ~ +65°C				
Wysokość pracy n.p.m.	do 2000m				
Wilgotność otoczenia	35% ~ 80% RH (bez kondensacji)				

Instrukcja użytkowania

- Dostępne są trzy tryby pracy regulatora: praca właściwa, regulacja i ustawienia początkowe. Po włączeniu zasilania, regulator jest w trybie pracy. Należy wybrać przycisk ^{SET} aby przejść do trybu regulacji. Jeśli przycisk ^{SET} jest wciśnięty ponad 3 sekundy, regulator przejdzie do ustawień początkowych. Wciśnięcie przycisku ^{SET} w trybie regulacji lub ustawień początkowych wywołuje powrót do trybu pracy.
- PV/SV: ustawienie temperatury i wyświetlenie aktualnej wartości. Za pomocą przycisków można ustawić temperaturę zadaną.
- Zmiana wartości parametru: w każdym trybie pracy należy wybrać przycisk daby wybrać żądaną funkcję i użyć przycisków
 aby zmienić ustawienia. Do zatwierdzenia służy przycisk set.
- Schemat poniżej prezentuje przełączanie pomiędzy trybami pracy :

[Tryb pracy właściwej] Ustawienie parametrów:

Display	Description	Ustawienia fabryczne
1234	Użyj 💌 🔺 aby ustawić temperaturę zadaną, i 🛛 aby przełączać się pomiędzy parametrami use	
R-5	RUN/STOP: włączanie i wyłączanie pracy	RUN
PERN	PATTERN: rozpocznij ustawianie wzorów (ustaw tryb kontroli na PROG)	0
SEEP	STEP: rozpocznij ustawianie kroków (ustaw tryb kontroli na PROG)	0
SP	SELECT POINT: Wybor pozycji punktu dziesiętnego (0: tylko liczby całkowite; 1: jedno miejsce po przecinku)	1
LoE	LOCK: Tryb blokady parametrów (LOCK1: blokada wszystkich; LOCK2: możliwość ustawienia tylko wartości SV i używania przycisków F1/F2)	OFF
RL IH	ALARM1 HIGH: Górny limit alarmu 1 (wyświetlany w zależności od ustawień w trybie alarmu)	4.0
RL IL	ALARM1 LOW: Dolny limit alarmu 1 (wyświetlany w zależności od ustawień w trybie alarmu)	4.0

AF SH	ALARM2 HIGH: Górny limit alarmu 2 (wyświetlany w zależności od ustawień w trybie alarmu)				
ALST	ALARM2 LOW: Dolny limit alarmu 2 (wyświetlany w zależności od ustawień w trybie alarmu)				
AF 3H	ALARM3 HIGH: Górny limit alarmu 3 (wyświetlany w zależności od ustawień w trybie alarmu)	4.0			
RL 3L	ALARM3 LOW: Dolny limit alarmu 3 (wyświetlany w zależności od ustawień w trybie alarmu)				
A IHP	ALARM1 HIGH PEAK: wartość max. 1				
<u> 8 IL P</u>	ALARM1 LOW PEAK: wartość min. 1				
85Hb	ALARM2 HIGH PEAK: wartość max 2				
RZLP	ALARM2 LOW PEAK: wartość min 2				
R3HP	ALARM3 HIGH PEAK: Wartość max. 3 (wyświetlana gdy OUT2 jest ustawione jako wyjście alarmu)				
RBLP	ALARM3 LOW PEAK: Wartość min. 3 (wyświetlana gdy OUT2 jest ustawione jako wyjście alarmu)				
oUE I	OUT1: Wyświetlanie i dostosowywanie wartości wyjściowej pierwszej grupy wyjściowej				
oUL2	OUT2: Wyświetlanie i dostosowywaniewartościwyjściowej drugiej grupy wyjściowej(wyświetlane gdy OUT 2 jest ustawionejakowyjście grzania/chłodzenia)	0.0			
o IMR	OUT1 MAX: Górny limit % pierwszej grupy wyjściowej (kalkulacja liniowa)				
o ML	OUT1 MIN.: Dolny limit % pierwszej grupy wyjściowej	0.0			
o2M8	OUT2 MAX: Górny limit % drugiej grupy wyjściowej (wyświetlane gdy OUT 2 jest ustawione jako wyjście grzania/chłodzenia)	100.0			
o2ML	OUT2 MIN: Dolny limit % drugiejgrupy wyjściowej (wyświetlane gdy OUT 2 jest ustawione jako wyjście grzania/chłodzenia)				
- EE 1	CT1: Wyświetlanie wartości CT1 (wyświetlane gdy sygnał jest podłączony do CT1)				
[FZ	CT2: Wyświetlanie wartości CT2 (wyświetlane gdy sygnał jest podłączony do CT2)				
	Naciśnij 🛛 < aby powrócić do ustawień temperatury.				

[Tryb ustawień początkowych] Ustawienie parametrów:

Wyświetlanie	Opis			
ENP E	INPUT: Ustawienie typu wejścia	PT		
EPUN	TEMP. UNIT: Ustawienie jednostki temperatury $^\circ C/^\circ F$ $($ niewyświetlane dla wejścia analogowego $)$	°C		
EP-H	TEMP. HIGH: Ustawienie górnego limitu temperatury (różny dla różnych typów czujnika)	850.0		
EP-L	TEMP. LOW: Ustawienie dolnego limitu temperatury (różny dla różnych typów czujnika)	-200.0		
EERL	CONTROL: Wybór sposobu sterowania (5 różnych trybów: ON-OFF, PID, MANUAL, FUZZY and 2PID)	PID		
<i>[</i> Ł <i>R</i> 5	CONTROL SV: Dostępne są 4 różne opcje: CONS; PROG; SLOP i REMO. Tryb REMOTE jest dostępny gdy funkcja REMOTE jest dodana.	CONS		
WE 51/	WAIT SV: Ustawienie temperatury oczekiwania (wyświetlane przy kontroli programowalnej)			
W-FW	WAIT TIME: Ustawienie czasu czekiwania (wyświetlane przy kontroli programowalnej)			
SLoP	SLOP: Ustawienie początkowego nachylenia (wyświetlane przy kontroli programowalnej)			
PALN	PATTERN: Wybór wzoru do edytowania (wyświetlane przy kontroli programowalnej). Dostępnych jest 16 wzorów, każdy zawiera 16 kroków. Ustawić można: OFF, SAVE, 0~F.	OFF		
LUNE	TUNE: Wybór AT lub ST (wyświetlane w trybie kontroli PID/2PID)	AT		
S-HE	SELECT HEAT/COOL: Wybór grzania, chłodzenia lub trybu podwójnego	H1H2		
ALA I	ALARM1 SET: Ustawienie alarmu 1	0		
RL Io	ALARM1 OPTION: Ustawienie opcji alarmu 1	0		
RL Id	ALARM1 DELAY: Ustawienie opóźnienia alarmu 1	0		
AL A2	ALARM2 SET: Ustawienie alarmu 2	0		
AL 20	ALARM2 OPTION: Ustawienie opcji alarmu 2	0		
<u>8654</u>	ALARM2 DELAY: Ustawienie opóźnienia alarmu 2	0		
ALA3	ALARM3 SET: Ustawienie alarmu 3	0		
AL 3o	ALARM3 OPTION: Ustawienie opcji alarmu 3	0		

RL 3d	ALARM3 DELAY: Ustawienie opóźnienia alarmu			
PĽE	PV Color Change Function: Wybór alarmu zmianiającego kolor wyświetlania PV	OFF		
PdSW	2PID zmiana temperatury (wyświetlane w trybie kontroli 2PID)	1.0		
PdRE	2PID reset temperatury (wyświetlane w trybie kontroli 2PID	0.5		
	REMOTE TYPE: Ustawienie typu zdalnego (Wyświetlane gdy			
THEF	(V0:0~5V; V1:1~5V; V10:0~10V; MA0:0~20mA; MA4:4~20mA)	MA4		
E×EE	Wybór funkcji pomocniczej 1	0		
E×E2	Wybór funkcji pomocniczej 2	0		
EoSH	COMMUNICATION WRITE: Włączenie/wyłączenie zezwolenia na zapis za pomocą komunikacji	OFF		
<u>E - SL</u>	COMMUNICATION SELECT: Wybór formatu ASCII/RTU	ASCII		
E-No	COMMUNICATION NO.: Ustawienie adresu do komunikacji	1		
<u>_6PS</u>	BPS: Ustawienie prędkości wymiany danych	9600		
LEN	LENGTH: Długość ramki danych	7		
SEoP	STOP: Ilość bitów stopu	1		
PRES	PARITY: Ustawienie parzystości bitów Wybierz	E		

[Tryb regulacji] Ustawienia parametrów:

Wyświetlanie	Onis	Ustawienia fabryczne
RE	AT: Włączenie autotuningu (wyświetlane gdy CTRL=PID/FUZZY/2PID, TUNE = AT, R-S=RUN)	OFF
SE	ST: Uruchomienie SELF-TUNING (wvświetlane αdv CTRL = PID. TUNE = ST)	OFF
Pīd	PID NO.: Wybór n-tego (n=0~5) regulatora PID. Gdy ustawiony na AUTO, PID jest wybierany automatycznie (Wyświetlane gdy CTRL=PID)	0
<u> </u>	PID SV NO.: Wybór SV w nawiązaniu do wybranego regulatora PID (n=0~5). Możliwy jest automatyczny wybór gdy regulator pracuje w trybie AUTO (wyświetlane gdy CTRL=PID/FUZZY/2PID).	100
<u>Р0</u> ~ Р5	P : Ustawienie członu proporcjonalnego (wyświetlane gdy CTRL = PID/FUZZY/2PID i TUNE = AT) Ustaw wartość P w nawiązaniu do wybranego regulatora PID (n=0~5). Gdy P jest ustawiona na AUTO, system wyberze wartość P automatycznie.	47.6
ـــــــــــــــــــــــــــــــــــــ	I: Ustawienie członu całkującego (wyświetlane gdy CTRL=PID/FUZZY/2PID; parametr wybierany automatycznie gdy TUNE=AT.) Ustaw wartość I w nawiązaniu do wybranego regulatora PID (n=0~5). Gdy I jest ustawiona na AUTO, system wyberze wartość I automatycznie.	260
ط0 _~ ط2	D: Ustawienie członu różniczkującego: (wyświetlane gdy CTRL=PID/FUZZY/2PID; parametr wybierany automatycznie gdy TUNE=AT.) Ustaw wartość D w nawiązaniu do wybranego regulatora PID (n=0~5). Gdy D jest ustawiona na AUTO, system wyberze wartość D automatycznie.	41
CoFO ~ CoFS	I OFFSET: Ustawienie przesunięcia członu całkującego, kiedy człon całkujący jest różny od 0. (wyświetlane gdyCTRL=PID/FUZZY/2PID; parametr ustawiany automatycznie gdy TUNE=AT.) Ustaw wartość IOF w nawiązaniu do wyboru regulatora PID (n=0~5). Gdy IOF jest ustawiony na AUTO, system wybierze wartość IOF automatycznie.	0
PdoF	PD OFFSET: Przesunięcie PD gdy człon całkujący=0 dla wyeliminowania uchybu statycznego.	0
FZ-R	Ustawienie wartości rozmytego wzmocnienia (gdy Ctrl=FUZZY)	4
FZdb	Ustawienie rozmytego pasma martwego (gdy Ctrl=FUZZY)	0
<u>o I-S</u>	OUT1 HYSTERESIS: Regulacja histerezy wyjścia 1 (w trybie ON/OFF)	0
o2-5	OUT2 HYSTERESIS: Regulacja histerezy wyjścia 2 (w trybie ON/OFF)	0
n I-H	OUT1 HEAT: Cykl kontroli ogrzewania dla wyjścia 1 (gdy Ctrl= PID/FUZZY/MANUAL/2PID)	Output
<u>o I-E</u>	OUT1 COOL: Cykl kontroli chłodzenia dla wyjścia 1 (gdy Ctrl= PID/FUZZY/MANUAL/2PID)	selection:
<u>o2-X</u>	OUT2 HEAT: Cykl kontroli ogrzewania dla wyjścia 2 (gdy Ctrl= PID/FUZZY/MANUAL/2PID)	C; V; S: 5sec.
<u>1-50</u>	OUT2 COOL: Cykl kontroli chłodzenia dla wyjścia 2 (gdy Ctrl= PID/FUZZY/MANUAL/2PID)	R: 20sec.
EoEF	COEF: Stosunek wyjścia 1 do wyjścia 2 (gdy Ctrl= PID/FUZZY/2PID i przy praca w trybie podwójnego wyjścia)	1.00
dERd	DEAD: Ustawienie pasma martwego (gdy Ctrl nie jest ustawione na MANUAL i w przypadku pracy w trybie podwójnego wyjścia).	0
P1' - F	PV FILTER: Współczynnik filtra wejściowego PV	1
PV - R	PV RANGE: Zakres filtra wejściowego PV	1.00

PľoF	PV OFFSET: Regulacja wejściowej kompensacji PV	0.0
P# 68	PV GAIN: Regulacja wejściowego wzmocnienia PV	0.000
51/51	SV SLOPE: Ustawienie wznoszącego pochylenia (gdy CRTS = SLOP)	
	ANALOG OUT1 MAX.: Maksymalna wartość kompensacji dla wyjścia 1	
<u>R IM</u> R	(1scale = 1µA; 1scale = 1mV)	0
8 111	ANALOG OUT1 MIN.: Minimalna wartość kompensacji dla wyjścia 1	0
	(1 scale = 1µA; 1scale = 1mV)	0
92M9	ANALOG OUT2 MAX.: Maksymalna wartość kompensacji dla wyjścia 2	0
11_111	(1scale = 1µA; 1scale = 1mV)	0
<u>ы</u> рм_	ANALOG OUT2 MIN.: Minimalna wartość kompensacji dla wyjścia 2	
	(1scale = 1µA; 1scale = 1mV)	0
OLMO	RETRANSMISSION MAX.: Maksymalna wartość kompensacji dla retransmisji	0
	(1scale = 1µA) (display when a Retransmission Card is connected to DT3)	U
EIL M ⁻	RETRANSMISSION MIN.: Minimalna wartość kompensacji dla retransmisji	
<u>rent</u>	(1 = 1μA) (wyświetlane gdy karta retransmisyjna dołączona do DT3)	0
RM-5	REMOTE GAIN: Regulacja wzmocnienia zdalnego (gdy CRTS = REMO)	0
RM-F	REMOTE GAIN: Regulacja kompensacji zdalnej (gdy CRTS = REMO)	0
RM-L	REMOTE LOW: Dolny limit zdalny (gdy CRTS=REMO)	0
RM-H	REMOTE HIGH: Remote higher limit (gdy CRTS=REMO)	100
E1/F 1	EVENT1: Ustawienie funkcji EVENT1 (wyświetlane gdy karta event dołączona do EVENT1)	OFF
EV:E2	EVENT2: Ustawienie funkcji EVENT2 (wyświetlane gdy karta event dołączona do EVENT2)	OFF
E1/E3	EVENT3: Ustawienie funkcji EVENT3 (wyświetlane gdy karta event dołączona do EVENT3)	OFF

Tryb PID: Każdy z 6 regulatorów PID może być zostać zastosowany. Gdy regulator pracuje w AUTO, program automatycznie wybiera ten regulator, który jest najbliżej temperatury docelowej

Wybierz grupę 0~5 regulatorów PID i wykonaj funkcję AT, system automatycznie wprowadzi wartości parametrów P; I; D i IOF dla odpowiedniej grupy.

P_d Wybierz n-ty PID (n = 0 ∼ 5)	Wciśnij <	Aby wybrać właściwy zestaw parametrów PID.
Ustaw temperaturę PID 0		Wprowadź wartość temperatury PID 5
S⊬D wciśnij ≪ ⊽	S# 1 - S#4	Wciśnij
PID 0 Wprowadź wartość członu proporcjonalnego dla	РІРЧ	Wprowadź wartość członu proporcjonalnego dla PID 5
Wprowadź wartość Ti dla PID 5	<u> </u>	5 Wprowadź wartość Ti dla PID 5
Wprowadź wartość Td dla PID 0	dl d4	Wprowadź wartość Td dla PID 5
L □F∐ Wprowadź wartość przesunięcia członu całkującego dla PID 0 Wciśnii ▲	CoF I CoF4	Wprowadź wartość przesunięcia członu całkującego dla PID 5
aby ustawić parametry w trybie regulacji		regulacji

Programowalna edycja: ustaw

Lustaw [LRS na. PRof.

aby ustawić żądany numer wzoru 0~F PLRN Ustaw żądany wzór numer 0~F wciśnij Jeśli ustawieno OFF, opuść edycję wzorów i przejdź do LUNE aby kontynuować ustawienia. SPOO Ustaw temperaturę kroku 0 we wzorze 0 SP 10 ~ SPFD Ustaw temperaturę kroku 0 we wzorze 15 Wciśnii ∇ £210 ~ EUU Edytuj czas kroku 0 we wzorze 0 (jednostka czasu: ELFD Edytuj czas kroku 0 we wzorze 15 (jednostka czasu: hh, mm) hh, mm) 5P0 I ~ ECOE SP | | ~ SPF Ustaw kroki 0~15 SPUF Ustaw temperaturę kroku 15 we wzorze 0 SPFF SP IF ~ Ustaw temperaturę kroku 15 we wzorze 15 ECOF ELIF~ ELFF Edytuj czas kroku 15 we wzorze 0 Edytuj czas kroku 15 we wzorze 15 PSY ! PSYD PSYF Wybierz aktualnie wymagany krok do wykonania Wybierz aktualnie wymagany krok do wykonania Wzoru 0 Wzoru 15 [][] Ustaw dodatkowy cykl (0~199) dla wykonania Ustaw dodatkowy cykl (0~199) dla wykonania EYE ~ Wzoru 0 wzoru 15 LINF Ustaw wzór połączenie wzoru 0 (0~F; 1 T N 1 Ustaw wzór połączenie wzoru 0 (0~F; END; STOP) END; STOP) ✓ aby powrócić do Wciśnij do aby powrócić do Wciśnij wyboru edytowanego wzoru wyboru edytowanego wzoru

■ Ustawienie regulatora przy pierwszym uruchomieniu

- 1. Podczas ustawiania regulatora DT3 po raz pierwszy, należy przytrzymać przycisk set przez 3 sekundy do czasu aż na ekranie pojawi się wybrać typ czujnika podłączonego do regulatora. Należy zwrócić uwagę, że niewłaściwy wybór rodzaju czujnika może spowodować błędny odczyt aktualnej temperatury (patrz tabela poniżej).
- Jeśli wybór typu czujnika jest dokonywany poprzez komunikację RS-485, należy wpisać odpowiednią wartość (z zakresu 0-14) do rejestru 1004H.
- Jeżeli do regulatora jest podłączony analogowy czujnik prądowy to należy zdjąć obudowę regulatora i ustawić JP8 na zwarcie (Zobacz tabelę poniżej)

Typ czujnika	Ustawieni	e Zakres temperatur	Typ czujnika	Ustawienie		Zakres temperatur
Termopara typu K	K C	-200 ~ 1300°C	Termopara typu TXK	Exk	10	-200 ~ 800°C
Termopara typu J	J 1	-100 ~ 1200°C	Czujnik typu (JPt100)	JPE	11	-20 ~ 400°C
Termopara typu T	2	-200 ~ 400°C	Czujnik typu (Pt100)	PŁ	12	-200 ~ 850°C
Termopara typu E	E 3	0 ~ 600°C	Czujnik typu (Ni120)	NĒ	13	-80 ~ 300°C
Termopara typu N	N 4	-200 ~ 1300°C	Czujnik typu (Cu50)	ΕIJ	14	-50 ~ 150°C
Termopara typu R	R 5	0 ~ 1700°C	Sygnał analogowy (0~5V)	1/5	15	-999~9999
Termopara typu S	5 6	0 ~ 1700°C	Sygnał analogowy (0~10V)	111	16	-999~9999
Termopara typu B	ь 7	100 ~ 1800°C	Sygnał analogowy (0~20m A)	MRD	17	-999~9999
Termopara typu L	B 1	-200 ~ 850°C	Sygnał analogowy (4~20m A)	MRY	18	-999~9999
Termopara typu U	l l s	-200 ~ 500°C	Sygnał analogowy (0~50m V)	MĽ	19	-999~9999

■ Tabela typu czujnika temperatury i zakresu działania

Jak skonfigurować analogowe wejście prądowe

Zdejmij pokrywę regulatora temperatury i ustaw JP8 na zwarcie. Zworka JP8 znajduje się w pobliżu wejścia czujnika na płytce PCB.

DEFAULT SETTING

Ustawienie jednostek i miejsc po przecinku

W regulatorach DT3 można zmienić sposobu wyświetlania aktualnej i zadanej temperatury poprzez ustawienie liczby miejsc po przecinku oraz jednostki (°C lub °F_).

- W trybie pracy parametr o znacza wyświetlaną liczbę miejsc po przecinku 0 lub 1. Np. dla SP=1 wyświetlana wartość to 25.5 stopni , a dla SP=0 wartość to 25.5 stopni.
- > W trybie ustawień początkowych parametr 2900 odpowiada za wybór wyświetlanej jednostki °C/°F

Wartość zadana i limity odczytu temperatury

- Górny limit mierzonej temperatury: W trybie ustawień początkowych jest to parametr zmierzonej temperatury musi znajdować się w zakresie zgodnym z "Tabelą typu czujnika temperatury i zakresu działania".
- > Dolny limit mierzonej temperatury: W trybie ustawień początkowych jest to parametr 27-2 (temperature low), dolny limit

zmierzonej temperatury musi znajdować się w zakresie zgodnym z "Tabelą typu czujnika temperatury i zakresu działania".
 Wartość zadana: Ten parametr może zostać ustawiony tylko w trybie pracy. Wartość zadana musi znajdować się w zakresie pomiędzy górnym i dolnym limitem odczytanej temperatury.

Filtr cyfrowy i ustawienie kompensacji liniowej

W celu uniknięcia zakłóceń sygnału wejściowego mogących spowodować niestabilną pracę regulatora, użytkownik może ustawić 2 parametry odpowiadające za filtrację sygnału.

W trybie regulacji parametry P'' - F i P'' - R służą do ustawienia filtrów.

- (Filter Factors) Współczynnik filtru cyfrowego (zakres = 0~50; domyślnie = 2) Wzór: PV = (Ostatnio zmierzona PV* n + Aktualnie zmierzona PV)/ (n+1), Gdy wartość
 - 🕮 F jest duża to szybkość odpowiedzi na zmiany temperatury zmniejsza się.
 - $P_{\nu} P_{\nu}$ (Filter Range) Zakres poprawnego odczytu (zakres parametru = 0.10~10.00°C)
- : Dla fabrycznej wartości = 1, kontroler rozpocznie przeliczenie wartości

zmierzonej, gdy aktualnie zmierzona wartość znajduje się w zakresie: Ostatnia zmierzona wartość +/-1°C / °F. Z tego względu, przy dużych oscylacjach wartości zmierzonej, zaleca się ustawienie wyższej wartości parametru.

Kiedy wyświetlana wartość zmierzona jest rożna od oczekiwanej, można dostosować kompensację liniową poprzez parametry 🖓 👉 i

Profile (Linear Compensation Offset Value) Przesunięcie kompensacji liniowej (zakres = -99.9 ~ 99.9). Równanie: Wartość Zmierzona = Aktualna Wartość Zmierzona + Ustawiona Wartość Offsetu

Na przykład: Aktualna Wartość = 25.0; Offset = 1.2. Po zastosowaniu kompensacji Wartość Zmierzona = 26.2.

CLIDER (Linear Compensation Gain Value) Wzmocnienie kompensacji liniowej (zakres = -0.999~0.999). Równanie: Wartość Zmierzona = Aktualna Wartość * (1 + wzmocnienie/1.000) + Wartość Offsetu. Na przykład: Aktualna Wartość = 25.0; Wzmocnienie = 0.100. Po zastosowaniu kompensacji Wartość Zmierzona = 25.0 * (1 + 0.100/ 1.000) = 27.5.

Jeśli wahania odczytu są stałe dla całego zakresu odczytu to kompensacja liniowa rozwiązuje w zupełności problem nieprawidłowego odczytu. Jeśli różnice odczytów różnią się dla rożnych temperatur to należy wyznaczyć liniowy błąd odczytu i zgodnie z obliczeniami ustawić wartości wzmocnienia i offsetu kompensacji.

Aplikacje dla wejść analogowych napięciowych i prądowych

Zakres wejściowy napięcia i prądu analogowego jest wykorzystywany jako górny i dolny limit ustawienia napięcia i prądu regulatora. Podczas ustawiania pożądanego napięcia lub prądu, musi on leżeć w zakresie górnej / dolnej granicy. Na przykład: jeśli zakres wejściowego napięcia analogowego wynosi 0 ~ 5 V, górne ustawienie limitu będzie wynosić 5000, a ustawienie dolnego limitu będzie wynosić 0. Jeśli ustawienie dziesiętne jest ustawione na 3 miejsca dziesiętne, napięcie wejściowe 2,5 V będzie wyświetlane jako 2.500. Równanie wartości wyświetlanej = (górny limit regulatora – dolny limitu regulatora) * (napięcie wejściowe - dolna granica analogowa) / (analogowy górny limit - analogowy dolny limit) + dolny limit ustawienia regulatora.

Wyłączenie funkcji zimnego złącza

Funkcja zimnego złącza termopary jest domyślnie ustawiona na włączoną, ale w niektórych przypadkach może być wyłączona. W trybie ustawień początkowych **EXEE** należy ustawić pierwszą cyfrę (Y) Yxxx, (gdy Y = 0 włącz / gdy Y = 1 wyłącz).

Kompensacja Wyjścia Analogowego

Jeżeli wykorzystane zostało analogowe wyjście prądowe (4~20mA) lub napięciowe (0~10V), wartość wyjściowa może być osiągana przy zastosowaniu funkcji kompensacji. Na przykład wyjście analogowe 1 może zostać dostosowane do wykorzystania funkcji kompensacji za pomocą

parametrów HIMA i HIMC w trybie regulacji. Zmiana wartości wyjściowej może być dodatnia lub ujemna (+/-) i może być ustawiana za pomocą przycisków góra/dół na panelu regulatora. Każde naciśnięcie zwiększa lub zmniejsza wartość o 1uA lub 1mV

Na przykład, aby zmienić zakres z 4~20mA na 3.9~20.5mA, należy ustawić parametr HIMA na 500 (20.5-20=0.5mA; 0.5mA/1uA=500) natomiast parametr na HIME -100. (3.9-4=-0.1mA; 0.1mA/1uA=-100)

- > Aby sterować wyjściem ręcznie, należy ustawić parametr
- > Aby ustawić wyjście na 0%, należy ustawić parametr OUE I lub OUE na OUD w trybie pracy.
- Aby dostosować dolny limit wyjścia analogowego, należy ustawić (w trybie regulacji) parametr na właściwa wartość. Np.: dla sygnału 4-20mA odpowiednią wartością będzie 4mA. Należy ustawić parametr BUD (dla wyjścia 1) lub BUD (dla wyjścia)

2) na pożądaną wartość

- Aby ustawić wyjście na 100% należy ustawić parametr out i (wyjście 1) lub out c (wyjście 2) na wybie pracy. 6
- Aby dostosować górny limit wyjścia analogowego, należy ustawić (w trybie regulacji) parametr na właściwą wartość. Np.: dla sygnału 4-20mA odpowiednią wartością będzie 20mA. Należy ustawić parametr R IMR (dla wyjścia 1) lub R2MR (dla wyjścia 2) na pożądaną wartość.

Retransmisja i dostosowanie kompensacji

Gdy wartość wejściowa ulegnie zmianie, dane wyjściowe retransmisji również zostaną odpowiednio zmienione. Na przykład: Jeśli retransmisja = 4 ~ 20mA; górny/ dolny limit = 100.0 ~ 0. Gdy kontroler odczytuje 0 wystawia 4mA; kiedy kontroler czyta 100 wystawia 20 mA. Wartość wyjściowa może być również wartością ujemną. W takim wypadku nastawiamy ustawia górny / dolny limit = 0 ~ 100,0. W tym przypadku, gdy kontroler odczytuje 0, wystawia 20 mA; kiedy kontroler czyta 100, wystawia 4mA.

(Rysunek 1: Proporcionalny diagram wyjściowy)

- Aby ustawić retransmisję na dodatnią / ujemną (najpierw musi zostać zainstalowana karta retransmisji): W (ustawieniu > początkowym)ustawionym ostatnią cyfrę (Y) w parametrze gdy Y = 1 nachylenie ujemne.
- Ustawienie dolnych limitów retransmisii:
 - Upewnij się, że nachylenie retransmisji jest dodatnie. a)
 - Ustaw wartość dolnego limitu na większą niż wartość wyświetlana: W (ustawieniach początkowych) ustaw 🖽 L b) wartość wyższą niż wyświetlana (PV)
 - c) Wprowadź wartość analogową do regulatora, sprawdź miernik i dostosuj wartość wejścia analogowego: W (trybie regulacji)wprowadź nową wartość do
- Ustawienie górnych limitów retransmisji:
 - Upewnij się, że nachylenie retransmisji jest dodatnie. a)
 - Ustaw wartość górnego limitu na mniejszą niż wartość wyświetlana: W (ustawieniach początkowych) ustaw b) wartość niższą niż wyświetlana (PV)
 - Wprowadź wartość analogową do regulatora, sprawdź miernik i dostosuj wartość wejścia analogowego: W (trybie c) regulacji)wprowadź nową wartość do REMA

Sprawdzenie wersji firmware i typu wyjścia

Po włączeniu wyświetlacza wartości PV (Wartość Aktualna) i SV (Wartość Zadana) prezentują wersję firmware'u, typ wyjścia i typ czujnika przez pierwsze 3 sekundy.

- PV (3 pierwsze znaki) oznaczają wersję firmware'u (np. V110 oznacza wersję V1.10).
 - PV (4 znak) oznacza funkcję 1 rozszerzenia
- ⊳ Ć: Komunikacja RS485, E: Weiście EVENT3 SV (2 pierwsze znaki) oznaczają typ wyjścia OUT1 i OUT2. 5 N: Brak funkcji, V: Wyjście impulsowe, R: przekaźnik, C: wyjście prądowe L: wyjście napięciowe, S: przekaźnik SSR SV (3 znaki) oznacza funkcję 2 rozszerzenia 5 N: Brak funkcji, C: pomiar CT, E: wejście EVENT1, R: wejście REMOTE SV (4 znak) oznacza funkcję 3 rozszerzenia N: Brak funkcji, C: pomiar CT, E: wejście EVENT2, R: Wyjście Retransmisji

Wybór grzania/ chłodzenia/ alarmu/ podwójnej pętli sterowania

Seria DT3 posiada wbudowany kanał sterujący (OUT1) oraz 2 kanały alarmowe (ALARM1 & ALARM2). Użytkownik może dodatkowo dołączyć drugi kanał sterujący (OUT2) lub 3 kanał alarmowy (ALARM2).

Używając pierwszego kanału sterującego:

W trybie ustawień początkowych należy ustawić parametr 5-HC na tryb grzania (H1) lub chłodzenia (C1).

- Używając drugiego kanału sterującego:
- Gdy 2 kanał wyjścia (OUT2) jest używany jako trzeci zestaw alarmu (ALARM3), należy ustawić 5746 w grzanie + alarm 3 ⊳

(H1A2) lub chłodzenie + alarm 3 (C1A2) w (Ustawienia początkowe).Wyjście OUT2 typu przekaźnik, wyjście impulsowe, wyjście prądowe, napięciowe i przekaźnik SSR mogą być użyte jako ALARM ON-OFF. Na przykład OUT2 jest wyjściem analogowym prądowym. Sygnał 4mA jest wystawiony gdy alarm jest OFF. Sygnał 20 mA jest podany po włączeniu alarmu.

Jeśli 2 kanał sterujący są wykorzystywane dla podwójnej pętli sterowania, należy ustawić parametr (H1H2), chłodzenia (C1C2), grzania/chłodzenia (H1C2), lub chłodzenia/grzania (C1H2) w ustawieniach początkowych.

Parametr martwego pasma (Dead Band) jest aktywowany automatycznie gdy regulator pracuje w podwójnej pętli sterowania. Funkcja ta jest użyta w celu redukcji strat energii spowodowanej częstym przełączaniem pomiędzy grzaniem i chłodzeniem (poniższy rysunek). Na przykład, jeśli SV=100 i DEBE= 2.0, żadne wyjście nie będzie wysterowane, kiedy temperatura znajduje się w przedziale 99~101°C.

Pasmo przenoszenia dla trybu kontroli ON-OFF:

Pasmo przenoszenia dla trybu kontroli PID:

Kiedy urządzenie pracuje z wykorzystaniem regulacji PID i podwójnej pętli sterowania, parametr

COEF pozwala na ustawienie wartości P dla drugiego regulatora. Parametry pierwszego regulatora są generowane kiedy TUNE = AT. Użytkownik może jednak ustawić je ręcznie. Parametr P drugiego regulatora jest równy wartości parametru P pierwszego przemnożonej przez COEF.

. Parametry I i D drugiego regulatora PID pozostają takie same jak pierwszego PID.

Ustawienie trybu sterowania SV

Istnieją 4 metody ustawiania SV (temperatury zadanej): Fixed, Slope, Program i Remote.

- Tryb Fixed SV: reguluje temperaturę tak, aby bezpośrednio wzrosła do ustalonej temperatury
 - > Ustaw parametr **LERS** na **LONS**(Tryb ustawień początkowych)
 - > Ustaw docelową temperaturę: ustaw wartość SV za pomocą parametru w (Tryb pracy)
- Tryb Slope SV: Temperatura kontrolna wzrasta zgodnie z nachyleniem (jednostka: °C / min.). Przykładowo ustawiamy nachylenie 0,5 i ustaw SV na 200,0 °C; oznacza to, że temperatura wzrasta o 0,5 °C co minutę od temperatury pokojowej do 200,0 °C.
 - > Ustaw parametr $\frac{2285}{22}$ na $\frac{5202}{2}$ (tryb ustawień początkowych)
 - Ustaw rosnące nachylenie (jednostki: °C / min. lub °C / s): ustaw wzrost nachylenia według parametru 5/5/2 w (trybie

regulacji)

- Ustaw temperaturę zadaną: ustaw wartość SV za pomocą parametru w (trybie pracy)
- Ustaw jednostkę nachylenia (jednostka: °C / min. lub °C / s): w parametrze EXEE w (trybie ustawień początkowych) ustaw odpowiedni Y zgodnie z przykładem xxYx (Y może wynosić 0 lub 1, Y = 0: °C / min. Y = 1: °C / s).
- Program SV mode: Oznacza to, że wartość nastawy temperatury zadanej nie jest stałą wartością, ale krzywą zdefiniowaną przez użytkownika zgodnie z jego wymaganiami. Poprzez regulację PID temperatura wzrasta wraz ze zdefiniowaną krzywą temperatury. Użytkownik może zdefiniować 16 wzorów po 16 kroków, wraz z parametrem łączącym, pętlą i liczbą wykonań. Każdy krok ma 2 parametry -wartość ustawienia temperatury i czas. Jeśli początkowy krok ma parametr czasu ustawiony na 0, temperatura wzrośnie od temperatury pokojowej z odpowiednim nachyleniem do temperatury docelowej. Po ustawieniu tych parametrów, każdy regulator temperatury będzie posiadał własny zestaw początkowego wzorca i początkowego kroku dla utworzenia własnej krzywej grzania. Wyjaśnienie niektórych terminów:
- a) Wzorzec początkowy: ustaw program, aby uruchomił się z sekwencyjną liczbą wzorów
- b) Krok początkowy: ustaw program, aby uruchamiał się z kolejną liczbą kroków
- c) Początkowy nachylenie: Jeśli ustawienie czasu pierwszego kroku początkowego wzoru jest ustawione na 0 to należy ustawić początkowe nachylenie aby temperatura wzrosła z temperatury pokojowej do wartości ustawionej.
- d) Krok: zawiera 2 ustawienia parametrów: wartość zadaną X i czas realizacji T. X oznacza wartość zadaną temperatury jaka ma zostać uzyskana po czasie T. Jeżeli wartość X jest identyczna jak w poprzednim ustawieniu to proces ten nazywany jest Soak. Pierwsza działająca procedura jest wstępnie ustawiona jako Soak aby ustawić regulator temperatury na ustawienie punktu X z wyprzedzeniem i utrzymać temperaturę na X, przez czas trwania T.
- e) Parametr łącza: numer kolejnego wzorca, który ma zostać wykonany po zakończeniu tego wzorca. Jeśli ustawiony jest na na END to program zakończy się, ale zachowa ostatnią wartość. Jeśli ustawiony jest na STOP sterowanie programowe zakończy się gdy wyjście zostanie wyłączone.
- f) Liczba pętli: Liczba dodatkowych pętli do wykonania dla wzorca. Jeśli wartość jest ustawiona na 1, wzór zostanie wykonany 2 razy.
- g) Wykonywane kroki: Liczba kroków wykonanych dla każdego wzorca.
- h) Czas oczekiwania / temperatura oczekiwania: po osiągnięciu wartości temperatury programu można ustawić czas oczekiwania i temperaturę oczekiwania. Gdy aktualna temperatura nie mieści się w zakresie (wartość nastawy temperatury ± temperatura oczekiwania). W takim wypadku rozpocznie się odliczanie czasu aż aktualnie zmierzona temperatura osiągnie zakres (ustawiona temperatura ± temperatura oczekiwania) dla każdego etapu przed przejściem do następnego. Alarm zostanie załączony jeśli zakres (wartość zadana ± temperatura oczekiwania) nie zostanie osiągnięta, gdy odliczanie osiągnie wartość 0.
- i) Wykonanie:

Jeśli regulacja jest w trybie działania, program rozpocznie działanie od początkowego wzorca i początkowego etapu i będzie wykonywany krok po kroku.

Kiedy regulacja znajduje się w trybie końcowym, program przestanie działać i załączy wyjście. Gdy regulacja jest w trybie zatrzymania a temperatura jest kontrolowana przez wartości ustawione przed zatrzymaniem to ponowne wybranie trybu pracy spowoduje rozpocznie działanie od początkowego wzorca i początkowego kroku. Gdy kontrola jest w trybie pauzy oraz temperatura jest kontrolowana przez ustawioną wartość przed zatrzymaniem, z powodu ponownego wybrania stanu początkowego, program rozpocznie pracę od kroku na którym został zatrzymany i zostana wykonane pozostałe cześci programu.

- > Ustaw parametr [2295] na PROB w [Trybie ustawień początkowych]
- SEEP na krok początkowy: Ustaw parametr SEEP na krok początkowy w [Trybie Pracy]
- Wybierz edytowany wzorzec: Ustaw parametr WEN w [Trybie ustawień początkowych] aby ustawić edytowany wzorzec, jeśli wybranym wzorcen jest 'x':

Wciśnij daby wybrać wzorzec zawierający: "SP'x'0", "tM'x'0", "SP'x'1", "tM'x'1"... "SP'x'F", "tM'x'F", "PSY'x' ", "CYC'x' ", "LiN'x' ", gdzie 'x' jest wybranym wzorcem, może mieć wartości 0, 1, ..., E, F. "SP'x'0"、 "SP'x'1"、 …" SP'x'F" jest ustawieniem temperatury dla wybranego kroku; "tM'x'0" 、 "tM'x'1"、 … "tM'x'F" jest ustawieniem czasu dla danego kroku; "PSY'x' " **is the maximum effective procedure**; "CYC'x' " jest liczbą wykonań pętli, "LiN'x'" jest numerem kolejnego wzorca który ma być wykonany po wykonaniu tego wzorca.

- > Ustaw zbocze początkowe: Ustaw zbocze parametrem SLOP w [Trybie ustawień początkowych] (jednostka: 0.1℃/min. lub 0.1℃/s)
- > ustaw temperaturę oczekiwania: Ustaw temperaturę parametrem 📈 אין (Trybie ustawień początkowych) .
- > Ustaw czas oczekiwania: Jednostka min., ustaw czas parametrem U-LM w [Trybie ustawień początkowych].
- Set unit of program edit time: Set value corresponding to Y position of parameter początkowych], e.g., xxYx (Y is 0 or 1; 0 : °C/min., 1 : °C/s)
- Ustaw metodę wyświetlania SV w trybie programu: Ustaw wartość odpowiadającą pozycji Y parametru EXEC w [Trybie ustawień początkowych], np., Yxxx (Y = 0 lub 1, 0: normalne, 1: dynamiczne)
- Ustaw wyłączenie oszczędzania w trybie programu: Ustaw wartość odpowiadającą pozycji Y parametru LKEC in [Trybie ustawień początkowych], e.g., xxxY (Y = 0 lub 1; 0: normalny, 1: oszczędzanie przy wyłączaniu)
- Uwaga: Po wprowadzeniu jakichkolwiek ustawień lub zmian parametrów programu, zapisz ustawienia / zmiany w sterowniku, wybierając parametr ZAPISZ. W przeciwnym razie ustawienia / zmiany zostaną zresetowane po wyłączeniu zasilania.

Jak **ZAPISAĆ:**

- Wybierz BREN w menu i przyciskami wybierz SREE aby zapisać. SREE jest wyświetlany jedynie gdy ustawienia/zmiany zostaną dokonane.
- Używając RS485 zapisz wartość 1 do adresu 1129H, aby zapisać ustawienia

Tryb zdalny: Wprowadzanie wartości ustawienia może być dynamiczne, wartość analogowa (napięcie lub prąd) może zostać przekształcona na dynamiczną wartość wejściową. Do konwersji można zastosować dwie metody: nachylenie dodatnie lub nachylenie ujemne, są one przedstawione w następujący sposób:

- a) Pozytywne nachylenie Zdalne ustawienie: Wyświetlacz zdalnego wejścia analogowego jest dodatnio proporcjonalny do ustawienia wejścia, np .: Zdalny typ wejścia jest wybierany jako napięcie analogowe 1 ~ 5 V, Zdalny wyższy limit wejścia jest ustawiony jako 5000, Zdalny dolny limit wejścia jest 1000, wyświetlanie dziesiętne jest ustawione na 0; gdy wejście zdalne ma wartość 5V, ekran pokazuje 5000; gdy wejście zdalne ma wartość 2V, ekran pokazuje 2000; to jest ustawienie dynamiczne ekranu. (Wartość ustawienia dynamicznego = (Zdalny wyższy limit wejścia zdalnego dolny limit wejścia zdalnego) + Zdalny dolny limit wejścia zdalnego dolny limit wejścia zdalnego) + Zdalny dolny limit wejścia)
- b) Negatywne nachylenie Zdalne ustawienie: Wyświetlacz zdalnego wejścia analogowego ma ujemną proporcję z wejściem ustawień, np .: Zdalny typ wejścia jest wybrany jako napięcie analogowe 1 ~ 5 V, Zdalny wyższy limit wejścia ustawiony jest jako 5000, Zdalny dolny limit wejścia jest 1000, wyświetlanie dziesiętne jest ustawione na 0; gdy wejście zdalne ma wartość 5V, ekran pokazuje 1000; gdy wejście zdalne ma wartość 2V, ekran pokazuje 4000; to jest ustawienie dynamiczne ekranu. (Wartość ustawienia dynamicznego = (Zdalny wyższy limit wejścia Zdalny dolny limit wejścia) * (Zdalna wartość wejściowa dolny limit wejścia zdalnego) / (wyższy limit wejścia zdalnego dolny limit wejścia zdalnego) Zdalny dolny limit wejścia)

> Ustaw parametr CCPS na REMO w (Trybie ustawień początkowych)

Uwaga: Uwaga: Ta opcja jest dostępna tylko po włożeniu karty Remote. Jeśli typ Remote ma prąd analogowy, JP na karcie Remote musi być zwarty (za pomocą zworki). Jeśli typ Remote ma napięcie analogowe, upewnij się, że JP jest otwarty.

Ustawienie trybu zdalnego Ustaw typ wejścia zdalnego (w tym prąd analogowy 0 ~ 20 m A, 4 ~ 20m A, napięcie analogowe 0 ~ 5 V, 1 ~ 5 V,0 ~ 10V) Ustaw zdalny typ wejścia parametrem **FILP** w **(**Trybie ustawień początkowych **)**

Ustawienie nachylenia dodatniego / ujemnego: Ustaw odpowiednią wartość pozycji Y parametru EXEL w [Initial Setting Mode], e.g.: xYxx (Y = 0 lub 1; 0: dodatnie; 1: ujemne).

Zdalny dolny limit wejścia:wprowadź dolną granicę sygnału analogowego za pomocą parametru **FM-F** w [Trybie Regulacji]

Zdalny górny limit wejśćia:wprowadź górną granicę sygnału analogowego za pomocą parametru $\overline{HH-E}$ in [Regulation Mode]

- > Zdalny dolny limit: Ustawianie zdalnego dolnego limitu według parametru
- Zdalny górny limit: Ustawienie zdalnego górnego limitu według parametru IIII in [Regulation Mode]

Jak ustawić wejście prądowe

Zewrzyj zworkę na płytce wejść zdalnych.

DEFAULT SETTING

napieciowe (ustawienie fabryczne) JUMPER PIN HEADER

Ustawienia trybów kontroli temperatury

Dostępne są 4 tryby kontroli: ON-OFF, PID, FUZZY i MANUAL.

ON-OFF Mode: W przypadku wyjścia grzewczego wyjście jest wyłączane, gdy wejście jest większe niż wartość nastawy; wyjście jest włączone, gdy wejście jest mniejsze niż (wartość nastawcza - wartość ustawienia czułości regulacji). Dla wyjścia chłodzenia wyjście jest włączone, gdy wejście jest większe niż (wartość ustawienia + wartość nastawienia czułości regulacji); wyjście jest wyłączone, gdy wejście jest mniejsze niż wartość ustawienia. Jeśli jedno z 2 wyjść jest ustawione na ogrzewanie, a drugie na chłodzenie, strefę bez akcji można ustawić w następujący sposób.

- > Ustaw parametr CERL na OMOF w [Trybie ustawień początkowych]
- Ustawienia czułości: Ustaw histerezę parametrem [Regulation Mode] na 0 1-5 (Wyjście 1), 02-5 (Wyjście 2)
- Ustawienie Martwej strefy dla obydwu wyjść: Ustaw Martwą strefę parametrem definition w [Regulation Mode]

- PID Mode: Po ustawieniu na ogrzewanie lub chłodzenie program wykonuje operację PID z użyciem temperatury wejściowej i temperatury zadanej. Dla tej funkcji należy ustawić parametry regulatora PID i okres, parametry te mogą być również generowane automatycznie za pomocą auto-tuningu (AT).
 - Dostępnych jest sześć zestawów parametrów PID, z których jeden może być wybrany do realizacji PID, a program może a) automatycznie wybrać zestaw PID, który jest najbardziej zbliżony do wartości wejściowej. Aby to osiągnąć, każdy zestaw parametrów PID ma wartość ustawienia wejścia referencyjnego, która umożliwia użytkownikowi ustawienie ręcznego lub automatycznego dostrajania (AT). np., dla sześciu zestawów parametrów PID, jak pokazano poniżej, SV jest ustawieniem wejścia referencyjnego. Wybierzmy czwarty zestaw jako parametr uruchamiający PID: tj. P = 40, I = 220, D = 55, IOF = 30%. Jeśli wybierzemy AT, aby znaleźć zestaw najbliższy ustawionej wartości z wejściem nastawczym 230, program automatycznie znajdzie drugi zestaw jako działający parametr dla operacji PID.

	0	1	2	3	4	5
SV	80	160	240	320	400	480
Р	120	46	70	60	40	50
-	100	140	180	200	220	240
D	25	35	45	50	55	60
IOF	20	10	30	20	30	21

- Ustaw parametry PID i okres kontrolny: parametry PID mogą być regulowane ręcznie zgodnie z charakterystyką b) systemu lub tworzone automatycznie przez AT, wstępnie ustawiona wartość całkująca jest ustawiana jako I parametr ≠ 0, pozwalający na szybkie osiągnięcie wartości ustawienia; jednostka to % mocy wyjściowej; proporcjonalna kompensacja błędu to: gdy parametr I jest ustawiony na = 0, w celu dostosowania skrócenia czasu do osiągnięcia temperatury.
- Okres kontrolny jest okresem działania PID, jeśli okres kontrolny wynosi 10s, oznacza to, że operacia PID jest wykonywana co 10 sekund. Wynik jest następnie wysyłany w celu kontrolowania temperatury. Jeśli system szybko się nagrzewa, okres kontrolny nie należy ustawiać na zbyt dużą wartość. Dla wyjścia przekaźnikowego należy uwzględnić żywotność przekaźnika, krótki okres skróci żywotność przekaźnika.
 - Coef i DeadBand są dodawane w parametrze PID dla podwójnego wyjścia (jeden do ogrzewania i drugi do c) chłodzenia). Coef odnosi się do stosunku między pierwszą i drugą częścią wyjścia (parametr P z drugiej grupy = Coef * P, Coef = 0,01 ~ 99,99); DeadBand to pokrywająca się temperatura wyjścia P pierwszej grupy i drugiej grupy. Ustaw parametr [LRL na PLd w [Trybie ustawień poczatkowych]
- \triangleright
- Dla wybrania grzania lub chłodzenia: Wybierz odpowiednią opcję parametrem 5-20 w [Trybie ustawień > początkowych].
- Jeżeli nie ma karty w Output2, opcjami do wybrania są: H1, C1 (H for heating, C for cooling, 1 for output 1).
- > Jeżeli zainstalowano kartę w Output 2, opcjami do wybrania są: H1H2, C1H2... H1A2(H dla grzania, C dla chłodzenia, 1 dla wyjścia 1, 2 dla wyjścia 2, A dla alarmu)
- Wybierz <u>numer</u> ustawień PID jako bieżący parametr oraz ustaw parametr PID: Wybierz 0~5, HECO, za pomocą > parametry 📕 📶 w (trybie regulacji), wciśnij przycisk < aby ustawić parametry PID "SV'x'", "P'x'", "I'x'", "d'x'", and "ioF'x'", gdzie 'x' jest to wstępnie wybrany parametr pracy PID, z zakresu 0~5. "SV'x'" jest to wartość nastawy temperatury; "P'x", "I'x", "d'x", "ioF'x" odpowiadają P, I, D, oraz IOF.
- Ustaw okres kontrolny: w parametrze: w [trybie regulacji], PV wyświetla "o'x'-'y'", 'x' to 1(wyjście 1) lub 2 (wyjście 2), 'y' to ⊳ H(Grzanie) or C (Chłodzenie)
- Ustawianie Coef: Ustaw wartość Coef parametrem
- Ustawianie DeadBand dla podwójnego wyjścia: Ustaw strefę martwą parametrem de w [Regulation Mode] \triangleright
- załaczanie pracy regulatowa: Ustaw parametr R-5 in (Tryb Pracy) to RLM. >
- Ustawienie AT (Auto Tuning): Ustaw parametr 2012 na 2011 w [Regulation Mode]. Po zakończeniu autotuningu automatycznie zostana ustawione odpowiednie parametry regulatora PID a na wyświetlaczu pojawi się 💴 🕂
- Uwaga: W czasie autotuningu system musi być ustawiony tzn. czujnik temperatury musi być podłączony i poprawnie skonfigurowany oraz wyjścia muszą być podłączone do układów grzania i chłodzenia.
- Tryb Ręczny: Tryb ręczny może wymusić ustaloną wartość na wyjściu. Normalnie tryb ręczny jest używany na zmiane z trybem PID.
 - Przełączenie z tryby PID na Tryb ręczny: Wyjście sterujące zachowa oryginalną wartość wyjścia przed przełączeniem a) na sterowanie ręczne. Np. Jeśli wyjście sterujące obliczone przez PID wynosi 20%, to wyjście sterujące po przełączeniu na sterowanie ręczne wynosi 20%. Możesz wymusić stałą wartość wyjściową po przełączeniu, na przykład: kontrolowanie wyjścia na 40%.
 - b) Przejście z trybu sterowania ręcznego na sterowanie PID: jeśli ręczna kontrola przed przełączeniem na regulację PID wynosi 40%, program przyjmie 40% jako wartość początkową do obliczenia wartości PID i wyprowadzenia nowego sterowania.
- Uwaga: Jeśli zasilanie zostanie wyłączone w trybie sterowania ręcznego, wartość wyjściowa % zostanie utrzymana po ponownym włączeniu zasilania.
- Ustaw parametr [LRL na MRNU] w [Trybie ustawień początkowych] ⊳

- Ustaw okres kontrolny: w parametrze: w [trybie regulacji], PV wyświetla "o'x'-'y'", 'x' to 1(wyjście 1) lub 2 (wyjście 2), 'y' to H(Grzanie) or C (Chłodzenie)
- Ustaw wartośc mocy w %: w [Tryb Pracy], PV wyświetla "oUt'x", 'x' to 1(wyjście 1) lub 2 (wyjście 2)
- Tryb FUZZY: Składa się z 2 części: parametrów PID i parametrów Fuzzy. Ponieważ sterowanie rozmyte jest obliczane na podstawie wartości P.I.D regulacji PID, użytkownik musi najpierw ustawić parametry P.I.D lub wykonać automatyczne dostrajanie (AT) w celu uzyskania tych parametrów. Ponadto kontrola Fuzzy obejmuje następujące 2 parametry dodatkowe.
- a) Ustawienie Fuzzy Gain: zmiana tej wartości będzie miała bezpośredni wpływ na obliczenie wzmocnienia. Zwiększenie tej wartości bezpośrednio zwiększy kontrolę Fuzzy; zmniejszenie tej wartości osłabi kontrolę Fuzzy. Zaleca się zmniejszenie tej wartości w przypadku układów o powolnej reakcji na ogrzewanie / chłodzenie. Wartość ta może zostać zwiększona dla systemów z szybką reakcją na ogrzewanie / chłodzenie.
- b) Ustaw strefę martwą konroli Fuzzy: efektywne pasmo kontroli Fuzzy, gdy wartość PV wchodzi w zakres SV-FZDB <PV
 <SV + FZDB, Kontrola Fuzzy zatrzyma obliczenia. To znaczy, gdy PV znajduje się w tym zakresie temperatur, jego kontrola Fuzzy jest stała.
- > Ustaw parametr CERL na FUZZ w [Trybie ustawień początkowych]
- Set Fuzzy Gain: Ustaw wartość Fuzzy Gain parametrem FZ-R w [Regulation Mode].
- Set Fuzzy DeadBand: Ustaw wartość Fuzzy DeadBand parametrem 200 w [Regulation Mode].

Ustawienie wielu zestawów parametrów PID

Po wybraniu sterowania PID, system oferuje 6 zestawów parametrów PID (PID 0 ~ 5) PID (parametry P, I, D i IOF) do wyboru przez użytkownika. W warunkach ogólnych wystarczający jest jeden zestaw PID (P0). W przypadku różnych wartości nastaw (SV), gdy ta sama wartość PID nie jest wystarczająca do kontroli precyzji, użytkownik może ustawić wiele zestawów parametrów PID, aby system automatycznie przełączał się na odpowiedni zestaw PID.

Ustawienie pojedynczego zestawu parametrów PID:

Ustaw parametr PCO na 0 (PID 0, pierwszy zestaw) w [Regulation Mode], Ustaw parametr PC to ON; w tym samym czasie, System zacznie automatycznie dostrajać wartość PID. Podczas obliczania dioda AT świeci się na panelu wyświetlacza. Gdy proces AT zostaje zakończony, dioda AT w panelu gaśnie. Obliczone parametry PID są wyświetlone w 500, 90, 00, 00 and CoFO, wartości mogą być zmienione przez użyszkodnika.

Automatyczne przełączanie pomiędzy zestawami parametrów PID:

Ustaw parametr **PLO** na 0 (PID 0, pierwszy zestaw) w **[**Regulation Mode **]** , ustaw wartość zadaną (np. 100), Ustaw parametr **PLO** na ON; po zakończeniu autotuningu regulator uzupełni parametry **SKO** =100, **PD**, **CO**, **DO** i **CO**

automatycznie.

Ustaw parametr LC to 1 (PID 1, drugi zestaw), ustaw wartość zadaną (np. 150), Ustaw parametr LC as ON; po zakończeniu autotuningu regulator uzupełni parametry SC = 150, P 1, C 1, d 1 and C F 1 automatycznie.

Ustaw parametr III na AUTO, System sam sprawdzi, czy aktualna wartość SV jest bliższa parametrowi SI/D czy SI/I,

i załaduje odpowiedni zestaw PID automatycznie. Np., Jeśli SV = 110, system załaduje parametry 5/1. Jeśli SV = 140, system załaduje parametry

Jeśli wymaganych jest więcej grup SV, PID2 ~ PID5 można ustawić w taki sam sposób, jak opisano powyżej.

Funkcja tuningu

Regulator zapewnia 2 metody strojenia (Auto_Tuning i Self_Tuning) do automatycznego generowania parametrów PID (dotyczy tylko sytuacji, gdy tryb sterowania jest ustawiony na sterowanie PID).

- Auto_Tuning: przez pełną moc grzania lub chłodzenia, temperatura może oscylować w górę i w dół. Regulator automatycznie oblicza parametry P, I, D, IOF; dodatkowo, zapisz wartość nastawy temperatury dla wykonanego AT. Po zakończeniu Auto_Tuningu kontrola PID zostanie załączona automatycznie..
- > Ustaw parametr LUNE na RE w [Trybie ustawień początkowych]
- Self_Tuning: Regulator automatycznie oblicza parametry P, I, D, IOF. Samostrojenie można przeprowadzić w trybie RUN oraz w trybie STOP. W trybie RUN parametry PID mogą być aktualizowane, gdy maszyna jest uruchomiona; w trybie STOP można uzyskać parametry PID dla wartości SV.
 - > Ustaw parametr
 - > ST Setting: Ustaw parametr 5L na aH w [Regulation Mode]
- Odwrócenie funkcji wyjścia

Ograniczenie zakresu wyjść

Maksymalna i minimalna moc wyjściowa może być ograniczona; Domyślnie maksymalne wyjście sterujące wynosi 100%, a minimalne wyjście sterujące wynosi 0%, Za pomocą ograniczenia można ustawić maksymalną wydajność sterowania na np. 80%, a minimalną moc wyjściową sterowania na 20%.

- Ustawienie górnego limitu mocy wyjściowej: Ustaw wartości parametrów IIII (wyjście 1), IIII (wyjście 2) in [Tryb Pracy].
- Ustawienie dolnego limitu mocy wyjściowej: Ustaw wartości parametrów [2] III. (wyjście1), [2] (wyjście 2) in [Tryb Pracy].

Funkcja CT

TTen kontroler zapewnia maksymalnie 2 CT (CT1 i CT2) do pomiaru wartości prądu wyjścia 1 i wyjścia 2; gdy odpowiadające wyjście jest włączone, użyj CT do pomiaru odpowiedniego prądu. Alarm zostanie włączony (ON), gdy prąd przekroczy ustawiony zakres alarmu. (Wymagana jest sprzętowa płytka PCB.)

- > Wstaw płytki CT1, CT2 do opcji 1, opcja 2
- > Ustaw odpowiedni alarm na Alarm CT: Sprawdź "Ustawienie wyjścia alarmu".
- > Ustaw górny limit wyjścia alarmu CT (jednostka: 0,1A): Patrz "Ustawienie wyjścia alarmu".
- Ustaw dolną granicę wyjścia alarmu CT (jednostka: 0,1A): Patrz "Ustawienie wyjścia alarmu".
- > Odczytaj aktualne wartości CT1, CT2: Odczytaj wartości prądu według parametrów
- Wybierz zakres pomiarowy CT
 - Ustawienie CT1 100A: Ustaw wartość odpowiadającą pozycji Y za pomocą parametru EXEC in [Trybie ustawień początkowych], xxYx (Y może być 0 lub 1; 0: 30A; 1: 100A)
 - Ustawienie CT1 100A: Ustaw wartość odpowiadającą pozycji Y za pomocą parametru początkowych], xYxx (Y może być 0 lub 1; 0: 30A; 1: 100A)

Zewrzyj zworkę na płytce CT. Maksymalne napięcie wejściowe płytki CT 200mV, prąd maksimum 50mA.

Zwykłe wejście (domyślne ustawienie 30A)

Funkcja EVENT

Ten kontroler zapewnia maksymalnie 3 ZDARZENIA (EV1 ~ EV3) dla odpowiednio ustawionych funkcji EV, jak pokazano w poniższej Tabeli. Na przykład, jeśli EV1 jest używany do wyboru Run/Stop, kiedy regulator jest ustawiony na status RUN, jeżeli zaciski w gnieździe Option1 są otwarte, kontroler jest w stanie RUN; jeśli zaciski w gnieździe opcji 1 są zwarte, regulator przełącza się w stan STOP.

Function setting	OFF	R-S	SV2	MANU	P-Hd	
Function	Function Disable		Run/Stop SV 1/ SV 2		Run/ Hold	
Tabela <1> Ustawienia funkcji						

event

Run / Stop: Ta funkcja przełącza kontroler pomiędzy stanem RUN i STOP.

SV 1 / SV 2: Ta funkcja wybiera SV 1 lub SV 2 jako aktywną wartość zadaną.

Auto / Manual: Ta funkcja wybiera PID i sterowanie ręczne.

Run/Hold: Ta funkcja przełącza kontroler pomiędzy stanem pracy i stanu zatrzymania podczas sterowania programem.

- Włóż płytkę EV1, EV2 do Opcji 1 lub Opcji2 lub użyj kontrlera z wbudowaną funkcją EV3
- Substaw funkcje EV zgodnie z Tabelą <1>, Ustawianie funkcji EVT za pomocą parametrów EVE 1, EVE2, EVE3 w [Regulation]

Mode]. Uwaga: Wybór elementów "Evťx" musi być zgodny z włożoną płytką PCB; jeśli włożona jest tylko opcja 1, wyświetli się tylko "Evt1".

Ograniczenie zakresu temperatury

Różne typy czujników posiadają różne zakresy działania (np. termopara typu J posiada zakres -100 ~ 1200). Ustaw $\mathcal{LP-H}$ (górne ograniczenie)/ $\mathcal{LP-L}$ (dolne ograniczenie) w trybie ustawień początkowych.

Jeżeli dolne ograniczenie jest ustawione na 0 a górne na 200, funkcja ograniczenia będzie miała następujące warunki: > Podczas ustawiania SV, zakres wartości będzie ograniczony do 0 ~ 200°C.

Podczas ustawiania SV, zakres wartości będzie ograniczony do 0 ~ 200°C.
 Podczas pracy Włącz/wyłącz (ON-OFF) i sterowania PID, Wyjście zostanie wyłączone jeśli PV przekroczy zakres ograniczenia (Wyjście alarmu działa normalnie)

Ustawianie użytkownika klawiszy funkcyjnych F1, F2

W trybie pracy, (tryb wyświetlania PV / SV), naciśnięcie przycisku funkcyjnego przez ponad 3 sekundy spowoduje wyświetlenie poniższych ustawień; naciśnij klawisze **V** , aby dokonać wyboru.

Funkcja	Opis
MENU	Gdy na ekranie innym niż tryb wyświetlania PV / SV, naciśnięcie klawisza F1 / F2 w trybie ciągłym może zapisać
	ustawienie, aby szybko zmienić ekran menu
	(Gdy na ekranie pojawi się komunikat KEY SAVE, ekran menu zostanie zapisany)
AT	Wybierając tę funkcję, przycisk F1 / F2 może służyć do szybkiego włączania / wyłączania funkcji AT
R-S	Wybierając tę funkcję, przycisk F1 / F2 może służyć do przełączania pomiędzy stanem RUN / STOP.
PROG	Wybierając tę funkcję, przycisk F1 / F2 może służyć do przełączania pomiędzy stanem RUN / HOLD.
ATMT	Wybierając tę funkcję, przycisk F1 / F2 może służyć do przełączania pomiędzy trybem sterowania PID i MANUAL
ALRS	Wybierając tę funkcję, przycisk F1 / F2 może służyć do resetowania stanu zatrzymania alarmu.
SV2	Wybierając tę funkcję, przycisk F1 / F2 może służyć do przełączania pomiędzy SV1 / SV2.

Aby wyłączyć funkcję F1 / F2, wybierz [MENU bez zapisywania jakiegokolwiek ekranu menu.

Edytuj samodzielnie zdefiniowany ekran menu

Ukryte ustawienie MENU: Zablokuj wszystkie przyciski ustawiając parametr LOC w LOC (Tryb pracy). W tym samym czasie naciśnij klawisze set i A przez 3 sekundy, aby wyświetlić PSSS i wprowadź Hasło-1. Na ekranie pojawi się numer menu MID , patrz poniższa tabela, aby uzyskać szczegółowe informacje. Wybierz "HIDE", aby ukryć menu.

Ustawienie warstwy MENU: Zablokuj wszystkie przyciski, ustawiając parametr LOC w LOC (Tryb pracy). W tym samym czasie naciśnij set i A przez 3 sekundy, aby wyświetlić 2005 i wprowadź Hasło-2. Na ekranie pojawi się numer menu 2007, patrz poniższa tabela, aby uzyskać szczegółowe informacje. Pozycje do wyboru to NOR = wyświetl warstwy; ADJ = dopasuj warstwy; SET = ustaw warstwy.

Resetowanie warstwy MENU: Zablokuj wszystkie przyciski, ustawiając parametr LOEw LOE (Tryb pracy). W tym samym czasie naciśnij ser i A przez 3 sekundy, aby wyświetlić PRSS i wprowadź Hasło-3. Na ekranie LYRE wyświetlane są parametry (Reset poziomu), wybierz SS, aby zresetować wszystkie warstwy menu do ustawień domyślnych.

Warstwa RUN		War	stwa dostosuj	Warstwa ustawień		
Nr. Menu	Odpowiadające Menu	owiadające Menu Nr. Menu Odpowiadające Menu		Nr. Menu	Odpowiadające Menu	
M101	1234	M201	<u>AF</u>	M301	<u>ENPE</u>	
M102	R-5	M202	<u> </u>	M302	LPLIN	
M103	PERN	M203	PLd	M303	2P-H	
M104	SEEP	M204	SI/ ()	M304	EB-F	
M105	<u>SP</u>	M205	P0	M305	<u>EERL</u>	
M106	LoL	M206		M306	<u>[</u>	
M107	RL IK	M207	dD	M307	WE 51/	
M108	AL IL	M208	<i>CoFO</i>	M308	W-FW	
M109	<u>AF Sk</u>	M209	PdoF	M309	SLoP	
M110	AL 2L	M210	$F \ge -R$	M310	PREN	
M111	AF 3H	M211	FZdb	M311	ELINE	
M112	<u> AL 3L</u>	M212	o 1-5 o 1-E	M312	5-HE	
M113	R IHP	M213	o2-502-E	M313	ALA I	
M114	$R \parallel P$	M214	o I-X	M314	RL Io	
M115	RZHP	M215	o2-1	M315	AL 19	
M116	ReilP	M216	LoEF	M316	ALA2	
M117	R3HP	M217	dERd	M317	AL Co	
M118	RBLP	M218	F1;' - F	M318	AF59	
M119	olit i	M219	PV - R	M319	AL 83	

M120	oULZ	M220	Pl'oF	M320	8L 3o
M121	o IMR	M221	P# 68	M321	8L 3d
M122	o IMC	M222	51/ SL	M322	P#[
M123	ociiiR	M223	A IMA	M323	otin
M124	oc'ii.	M224	A IMA	M324	PdSW
M125	<u>[</u> []	M225	A5WA	M325	PdRE
M126	[23]	M226	Reme	M326	RMEP
		M227	REMA	M327	EXEE
		M228	REME	M328	E×E2
		M229	FM-5	M329	EaSH
		M230	FM - F	M330	[-5]
		M231	FM-L	M331	E-No
		M232	RM - H	M332	685
		M233	E1/F 1	M333	LEN
		M234	<u> </u>	M334	SEoP
		M235	EV'E3	M335	PRES

Przywracanie ustawień fabrycznych

Zablokuj przyciski ustawiając parametr Loi na loi w trybie pracy. Przytrzymaj **se** i **s** jednocześnie przez 3 sekundy, aż pojawi się **PBE** (Parameter reset). Wybierz **SE** i uruchom ponownie aby przywrócić ustawienia fabryczne.

Funkcja blokady klawiszy

Ustaw LoC parametr na LoC w trybie pracy aby zablokować wszystkie klawisze. Ustaw parametr na LoC aby pozostawić możliwość ustawienia wartości zadanej SV oraz klawisze funkcyjne F1/F2.

Odblokowanie klawiszy:

Naciśnij jednocześnie ^{se} i ▼ gdy klawisze są zablokowane aż pojawi się parametr ^{KE} . Wpisz hasło aby odblokować klawisze. Domyślne hasło to 0000.

Áby zmienić hasło:

- 1. Naciśnij < na ekranie 🕊 🖓 aby przejść do ekranu zmiany hasła 🖽 🖓
- 2. Wpisz aktualne hasło na ekranie 2659. Jeśli hasło jest poprawne, pojawi się ekran wpisywania nowego hasła 1669. Jeśli hasło będzie niepoprawne ekran wróci do wyświetlania wartości zadanej i aktualnej PV/SV.
- 3. Wpisz nowe hasło dwukrotnie WEWP. Ekran wróci do wyświetlania wartości PV/SV z odblokowanymi klawiszami. Jeśli wpisane hasła będą różne, nastąpi powrót do kroku 2
- > Jeśli zapomnisz hasła jedyną możliwością odblokowania klawiszy jest przywrócenie regulatora do ustawień fabrycznych.

Wyjścia alarmów

W maszynie znajdują się dwa wyjścia alarmowe, można rozszerzyć maksymalnie 3 wyjścia alarmowe. W sumie 19 niezależnych ustawień alarmu można wprowadzić zgodnie z tabelą. Dostarczane są dodatkowe ustawienia, takie jak opóźnienie alarmu, aktywacji alarmu, podtrzymanie alarmu, odwrócenia wyjścia alarmu i rekord szczytowy alarmu, zgodnie z poniższym opisem:

- a. Ustawienie opóźnienia alarmu: Ustawia czas opóźnienia alarmu. Gdy ruch jest zgodny z trybem ustawiania alarmu, sterownik opóźni generowanie sygnału alarmowego; alarm zostanie aktywowany tylko wtedy, gdy warunki alarmu zostaną potwierdzone w ciągu opóźnionego czasu.
- b. Ustawienie aktywacji alarmu: alarm może być aktywowany mierzona wartość jest w zakresie ±5 od wartości wystąpienia alarmu, zabezpiecza to przed aktywacją alarmu podczas uruchomienia kiedy warunki alarmu są spełnione.
- c. Podtrzymanie alarmu: Komunikat alarmu zostanie podtrzymany dopóki alarm nie zostanie wyłączony.
- d. Odwrócenie wyjścia alarmu: Wyjście alarmu może być ustawione jako NC (Normalnie zamknięte) lub NO (Normalnie otwarte)
 e. Ustawienie zapisu szczytowego alarmu: Do rejestrowania wartości szczytowej sygnału alarmowego.

Ustawiona wartość	Alarm Type	Wyjście alarmu			
0	Funkcja alarmu wyłączona				
1	Przekroczenie górnego lub dolnego limitu: Alarm zostanie wywołany gdy wartość PV będzie wyższa niż SV+(AL-H) lub niższa niż SV-(AL-L).	OFF SV-(AL-L) SV SV+(AL-H)			
2	Przekroczenie górnego: Alarm zostanie wywołany gdy wartość PV będzie wyższa niż SV+(AL-H).	OFF			

3	Przekroczenie dolnego limitu: Alarm zostanie wywołany gdy wartość PV będzie niższa niż SV-(AL-L).	OFF SV-(AL-L) SV
4	Przekroczenie górnego lub dolnego limitu: Alarm zostanie wywołany gdy wartość PV będzie wyższa niż AL-H lub niższa niż AL-L.	OFF AL-L AL-H
5	Przekroczenie górnego limitu: Alarm zostanie wywołany gdy wartość PV będzie wyższa niż AL-H.	OFF AL-H
6	Przekroczenie dolnego limitu: Alarm zostanie wywołany gdy wartość PV będzie niższa niż AL-L.	OFF AL-L
7	Przekroczenie górnego/dolnego limitu z histerezą: Alarm zostanie wywołany gdy wartość PV będzie wyższa niż SV+(AL-H) Alarm zostanie wyłączony gdy wartość PV będzie niższa niż SV+(AL-L)	ON OFF SV SV+(AL-L) SV+(AL-H)
8	Przekroczenie górnego/dolnego limitu z histerezą: Alarm zostanie wywołany gdy wartość PV będzie niższa niż SV-(AL-H) Alarm zostanie wyłączony gdy wartość PV będzie wyższa niż SV-(AL-L)	ON OFF SV-(AL-H) SV-(AL-L) SV
9	Alarm odłączenia: Alarm jest aktywny jeśli czujnik jest nieprawidłowy lub odłaczony.	
10	Brak	
11	Alarm CT1: CT1 jest włączony, jeśli wartość CT1 jest mniejsza niż wartość AL-L lub wyższa niż AL-H.	ON
12	Alarm CT2: CT2 jest włączony, jeśli wartość CT2 jest mniejsza niż wartość AL-L lub wyższa niż AL-H.	AL-L AL-H
13	Gdy status SOAK jest włączony podczas programu PID ,wyjście alarmowe jest włączone.	
14	Gdy status RAMP UP jest włączony podczas programu PID ,wyjście alarmowe jest włączone.	
15	Gdy status RAMP DOWN jest włączony podczas programu PID ,wyjście alarmowe jest włączone.	
16	Gdy status RUN jest włączony podczas programu PID ,wyjście alarmowe jest włączone.	
17	Gdy status HOLD jest włączony podczas programu PID ,wyjście alarmowe jest włączone.	
18	Gdy status STOP jest włączony podczas programu PID ,wyjście alarmowe jest włączone.	
19	Gdy status END jest włączony podczas programu PID ,wyjście alarmowe jest włączone.	

- Aby ustawić tryb alarmu: Użyj parametrów ALA I, ALAZ, ALAZ w trybie ustawień początkowych do wybrania typu alarmu. Istnieje w sumie 19 różnych trybów (wymienionych w powyższej tabeli).
- Aby ustawić dórny limit alarmu: użyj parametrów RL III, RL ZH, RL JH w trybie pracy.
- Aby ustawić dolny limit alarmu: użyj parametrów AL IL, ALZL, ALZL w trybie pracy.
 Ustawienie opóźnienia alarmu: użyj parametrów AL IL, ALZL, ALZL w trybie ustawień początkowych.
- Aby włączyć odwrócenie alarmu: użyj parametrów AL Ia, ALZa, ALBa w trybie ustawień początkowych, (xx0x- normalna praca, xx1x- sygnał alarmu odwrócony)
- Aby ustawić Alarm 3: Funkcja Alarm 3 jest dostępna, gdy płytka wyjściowa jest podłączona do wyjścia 2. Użyj parametru 5-10 w trybie ustawień początkowych, naciśnij przycisk ▲ lub ▼, aby wybrać dla następujących elementów wyjść sterujących: H1H2, C1H2 ... H1A2 (H definiuje ogrzewanie, C definiuje chłodzenie, 1 wskazuje Wyjście1, 2 wskazuje Wyjście2, A wskazuje Alarm3). Wybierz x1A2 (ustawienie x na H lub C), aby uruchomić Alarm3.
- Aby włączyć ustawienie aktywacji alarmu: użyj parametrów RL Io, RL 2o, RL 3o w trybie ustawień poczatkowych. (xxx0normalna praca, xxx1- alarm standby)

- Aby włączyć podtrzymanie alarmu: użyj parametrów RL Io, RL 20, RL 30 w trybie ustawień początkowych, (x0xx- normalna praca, x1xx- alarm podtrzymany)
- Aby włączyć alarm wartości szczytowej : użyj parametrów AL Io, ALZo, ALBo w trybie ustawień początkowych, (0xxxnormalne działanie, 1xxx- sygnał szczytowy)

Jwaga: w poniższej tabeli opis bitów dotyczących dodatkowych opcji alarmów:						
Bit3	Bit2	Bit1	Bit0			
Alarm Szczytowy	Alarm Podtrzymany	Alarm Odwrócony	Alarm Standby			

Funkcja zmiany koloru PV: Ten kontroler zapewnia funkcję zmiany koloru PV. Kolor wyświetlacza PV zostanie zmieniony, jeśli wybrany alarm zostanie pobudzony. Użyj parametru PbC (kolor PV) w trybie ustawień początkowych, aby wybrać alarm, można

wybrać pozycje oFF, RLL, RLR I, RLR2 and RLR3.

Komunikacja poprzez RS-485

KOHTUTIKACJA POPIZEZ KS-465
 Wspierane prędkości transmisji: 2400, 4800, 9600, 19200, 38400bps.
 Nie wspierane zastawy komunikacyjne: 7N1, 802, 8E2
 Protokół komunikacyjny: Modbus (ASCII lub RTU)
 Kody funkcji: 03H - odczyt zawartości rejestru (max. 8 słów); 06H - zapis pojedynczego słowa do rejestru; 02H - odczyt danych bitowych (max. 16 bitów); 05H - zapis jednego słowa do rejestru.

5. Adresy i zawartość rejestrów danych:

Adres	Zawartość	Wyjaśnienie
		Jednostka pomiarowa 0.1, odświeżenie pomiaru co 0.1s
		Następujący odczyt oznacza wystąpienie błędu:
		8002H : Inicjacja procesu (temperatura nie została
1000H	Wartość procesu (PV)	jeszcze zmierzona) 8003H : Nie podłaczony czujnik pomiarowy
		8004H : Bład czujnika temperatury
		8006H : Bład przetwornika ADC, niemożliwy odczyt
		temperatury
		8007H : Błąd zapisu/odczytu pamięci
1001H	Wartość ustawiona (SV)	Jednostka 0.1, st. C lub F
1002H	Górna granica zakresu temperatury	Wartość nie powinna przekraczać zakresu pomiarowego
1003H	Dolna granica zakresu temperatury	Wartość nie powinna przekraczać zakresu pomiarowego
1004H	Typ czujnika wejściowego	Sprawdź opis "Typ czujnika temperatury i Zasięg temperatury"
1005H	Rodzaj sterowania	0: PID, 1: ON/OFF, 2: ręczne sterowanie, 3: FUZZY
1006H	Wybór między kontrolą grzania/chłodzenia	W zależności od wyboru Output Mode
1007H	Pierwsza grupa sterowania cyklem Grzania/Chłodzenia	1~990, jednostka 0.1 sekundy. Gdy wybrane jest wyjście przekaźnikowe monimalny czas cyklu to 5 sekund
1008H	Druga grupa sterowania cyklem Grzania/Chłodzenia	1~990, jednostka 0.1 sekundy. Gdy wybrane jest wyjście przekaźnikowe monimalny czas cyklu to 5 sekund
1009H	Wzmocnienie proporcjonalne P	0.1 ~ 999.9
100AH	Czas całkowania Ti	0~9,999
100BH	Czas opóźnienia Td	0~9,999
100CH	Standardowa wartość całkowania	0 ~ 100%, jednostka 0.1%
100DH	Offset wartości kontroli proporcjonalnej, dla Ti=0	0 ~ 100%, jednostka 0.1%
100EH	Ustawienie COEF (używane z podwójną	0.01 ~99.99, jednostka 0.01
	pętlą	
400511	sterowania wyjscia)	
100FH	ostawienie strety martwej (uzywane z podwóina petla	-99.9 ~ 999.9
	sterowania wyjścia)	
1010H	Histereza pierwszej grupy wyjściowej	-99.9~999.9
1011H	Histereza drugiej grupy wyjściowej	-99.9~999.9

	druga grupa wyjściowa	
1012H	Wartość wyjściowa odczytywana i zapisywana z wyjścia 1	Jednostka 0.1%, operacja zapisu działa jedynie w trybie strojenia ręcznego
1013H	Wyjściowa wartość odczytywana i zapisywana z wyjścia 2	Jednostka 0.1%, operacja zapisu działa jedynie w trybie strojenia ręcznego
1016H	Wartość regulacji temperatury	-99.9 ~ +99.9. Jednostka 0.1
1017H	Analogowe ustawienie dziesiętne	0~3
101CH	Wybór parametrów PID	0~5/AUTO
101DH	Wartość SV odpowiada wartośći PID	Działa tylko w dostępnym zakresie, jednostka: 0.1 skala
1020H	Alarm typu 1	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
1021H	Alarm typu 2	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
1022H	Alarm typu 3	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
1024H	Górny limit alarmu 1	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
1025H	Dolny limit alarmu 1	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
1026H	Górny limit alarmu 2	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
1027H	Dolny limit alarmu 2	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
1028H	Górny limit alarmu 3	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
1029H	Dolny limit alarmu 3	Proszę zapoznać się ze szczegółami z rozdziału "Wyjścia alarmowe"
102AH	Odczytanie stanu LED	b0: ALM3, b1: ALM2, b2: °C, b3: °F, b4: ALM1, b5: OUT2, b6:OUT1, b7: AT
102BH	Odczytanie stanu przycisku	b1 F2 b2 Góra b3 Petla b5 F1 b6 Dół b7 Set 0 wciśnii dolny przycisk
102CH	Ustawienia stanu blokady	- · · · · · · · · · · · · · · · ·
1026H	Wersia Software	V1 00 indicates 0x100
102111 1030H	Rozpocznii wzór	0~15
1032H	Pozostały czas wyknania kroku (sekundy)	Tylko odczyt
1033H	Pozostały czas wyknania kroku (minuty)	Tylko odczyt
1034H	Numer wykonywanego kroku	Tylko odczyt
1035H	Numer wykonywanego wzoru	Tylko odczyt
1036H	Odczyt wartości dynamicznej z Programowalnego kontrolera	Tylko odczyt
1039H	Zapis za pomocą komunikacji	0: Wyłączony (domyślnie), 1: Włączony
103AH	Wybór wyświetlania jednostki temperatury	0: $^\circ\mathrm{F}$, 1: $^\circ\mathrm{C}$ / wejście liniowe (domyślnie)
103BH	ustawienia AT	0: OFF (domyślnie), 1: ON
103CH	Ustawienia kontroli RUN/STOP s	0: STOP, 1: RUN (domyślnie), 2:END (tryb programu), 3: HOLD (tryb programu)
101FH	Rozpocznij krok	0 ~ 15
1200H~13FFH	Ustawienie 0~15 nastawy temperatury (liczba parzysta) Ustawienia wzoru 0~15 czasu realizacji (liczba nieparzysta)	-999 ~ 9999 Czas: 0 ~ 900 (1 minuta na skalę)
1400H~140FH	Aktualna liczba ustawień kroku Wewnątrz odpowiadającego wzoru	0 ~ 15 = N, wskazuje, że ten wzór jest wykonywany od kroku 0 do kroku N
1410H~141FH	Liczba cykli do powtórzenia Wykonania odpowiedniego wzoru	0 ~ 99 wskazuje, że te wzór został wykonany 1 ~ 100 razy
1420H~142FH	Ustawienie numeru wzoru połączenia odpowiadającego wzoru	0 ~ 15, 16 wskazuje koniec programu i pozostaje na obecnym kroku.17 wskazuje koniec programu i realizacji. 0~15 wskazuje kolejny numer wykonywanego wzoru Po wykonaniu bieżącego wzorca

		, , , , , , , , , , , , , , , , , , , ,
Address	Content	Definition
1100H	Dostosowanie wzrostu temperatury	
1101H	Zakres filtra temperatury	Zakres filtra temperatury: 10~1000, jednostka: 0.01 $^\circ\!\!\mathbb{C}$, domyślnie: 100(1.0 $^\circ\!\!\mathbb{C}$)
1102H	Współczynnik filtra temperatury	Ustawienie zasięgu: 0~50, domyślnie: 8
1103H	Odwrócenie wyjścia	Bit1: wyjście 2, Bit0: wyjście 1
1104H	Nachylenie wzrostu temperatury	Jednostka: 0.1° C/min lub 0.1° C/sec (patrz adres komunikacji 1124H)
1105H	Zdalny wybór typu wejścia	0: 0~20m A , 1: 4~20m A, 2: 0~5V, 3: 1~5V, 4: 0~10V

1106H	Kontrola AT	0: AT(automatyczne strojenie), 1: ST(strojenie ręczne)
11074	Ustawienie zdalnego odwrotnego	0. przód 1. tuł
110/H	wejscia	Bit3: rekord szczvtu. Bit2: Właczenie wstrzymania Bit1: Wyiście odwrotne. Bit0:
1108H	Alarm 1 wybór funkcji	włączenie trybu gotowości
1109H	Alarm 2 wybór funkcji	Bit3: rekord szczytu, Bit2: Włączenie wstrzymania Bit1: Wyjście odwrotne, Bit0: włączenie trybu gotowości
110AH	Alarm 3 wybór funkcji	Bit3: rekord szczytu, Bit2: Włączenie wstrzymania Bit1: Wyjście odwrotne, Bit0: włączenie trybu gotowości
110BH	Alarm 1 czas opóźnienia wyjścia	Jednostka: sekunda. Ustawienie zasięgu: 0~100sec
110CH	Alarm 2 czas opóźnienia wyjścia	Jednostka: sekunda. Ustawienie zasięgu: 0~100sec
110DH	Alarm 3 czas opóźnienia wyjścia	Jednostka: sekunda. Ustawienie zasiegu: 0~100sec
110EH	Górny limit wyjścia sterującego 1	Zasieg: dolny limit wyjścia sterującego ~100%, jednostka: 0.1%
110FH	Dolny limit wyjścia sterujacego 1	Zasieg: 0~górny limit wyjścia sterującego, jednostka: 0.1%
1110H	Górny limit wyiścia sterujacego 2	Zasieg: dolny limit wyiścia sterujacego ~100%, jednostka: 0.1%
1111H	Dolny limit wyiścia sterujacego 2	Zasieg: 0~aórny limit wyiścia sterujacego, jednostka: 0.1%
	Programowalna temperatura	
1112H	oczekiwania	Ustawienie zasięgu: 0~1000(100.0℃)
1113H	Programowalny czas oczekiwania	Jednostka: min. Ustawienie zasięgu: 0~900
1114H	Programowalne nachylenie wzrostu	Jednostka: 0.1℃/min lub 0.1℃/sec (patrz adres komunikacji 1124H) Ustawienie zasięgu: 0~1000
1115H	Tryb testowania	
1116H	Ustawienie górnej granicy Analogowego liniowego wviścia 1	Ustawienie prądu: 1skala=1µA, Ustawienie napięcia: 1skala =1mV
1117H	Ustawienie dolnej granicy	Ustawienie prądu: 1skala =1μΑ, Ustawienie napięcia: 1skala =1mV
1118H	Ustawienie górnej granicy Analogowego liniowego wyjścia 2	Ustawienie prądu: 1skala =1µA, Ustawienie napięcia: 1skala =1mV
1119H	Ustawienie dolnej granicy Analogowego liniowego wyjścia 2	Ustawienie prądu: 1skala =1µA, Ustawienie napięcia: 1skala =1mV
111AH	Ustawienie górnej granicy Retransmisji	Ustawienie prądu: 1skala =1µA
111BH	Ustawienie dolnej granicy Retransmisji	Ustawienie prądu: 1skala =1µA
111CH	Wybór eventu 1	0: OFF, 1: Run/Stop, 2: zmiana wartości SV, 3: PID/tryb ręczny, 4: przełączenie Na programowalny tryb wstrzymania
111DH	Wybór eventu 2	0: OFF, 1: Run/Stop, 2: zmiana wartości SV, 3: PID/tryb ręczny, 4: przełączenie Na programowalny tryb wstrzymania
111EH	Wybór eventu 3	0: OFF, 1: Run/Stop, 2: zmiana wartości SV, 3: PID/tryb ręczny, 4: przełączenie Na programowalny tryb wstrzymania
1120H	Wybór trybu kontroli SV	0: Stała, 1: Nachylenie wzrostu, 2: Programowalne wejśćie, 3: Zdalne wejście
1121H	Ustawienie zdalnej kompensacji	Ustawienie zasięgu: -999~999
1122H	Ustawienie zdalnego wzmocnienia	Ustawienie zasięgu: -999~999
1123H	Wybór dodatni/ujemny do zdalnego sterowania	0: Dodatnie, 1: Ujemne
1124H	Przełącz jednostkę czasu nachylenia	0: min, 1: sec
1125H	Kompensacja zimnego złącza	0: ON, 1: OFF
1126H	Zarezerwowanie programowalnego stanu pracy przy wyłączonym zasialniu	0: Brak, 1: Stan pracy jest zapisywany i będzie kontynuowany przez poprzedni Status po włączeniu zasilania
1127H	Wzmocnienie rozmyte	Ustawienie zasięgu: 1~10
1128H	Nieczułość rozmyta	Ustawienie zasięgu: 0.0~PB
1129H	Zapisanie programowalnych Ustawień w pamięci	0:Brak, 1: Zapisanie ustawień w pamięci
1182H	CT1 czytana wartość	Jednostka: 0.1A
1183H	CT2 czytana wartość	Jednostka: 0.1A

1. Format transmisji komunikacji: Kod polecenia: 03: odczytanie słów, 06: zapisanie 1 słowa Tryb ASCII

Komenda odczytu		Odpowiedź ko	mendy o	odczytu	Komenda zapisu Odpowiedź kome		mendy z	zapisu			
STX	, ,	·: '	STX	· · ·	, ,	STX	, ,	· · ·	STX	· · ·	, ,
ADR 1	·0'	'0'	ADR 1	ʻ0'	'0'	ADR 1	'0'	'0'	ADR 1	'0'	ʻ0'
ADR 0	'1'	'1'	ADR 0	'1'	'1'	ADR 0	'1'	'1'	ADR 0	'1'	'1'
CMD 1	'0'	'0'	CMD 1	'0'	'0'	CMD 1	'0'	'0'	CMD 1	'0'	'0'

CMD 0	'3'	'2'	CMD 0	'3'	'2'	CMD 0	'6'	'5'	CMD 0	'6'	'5'
Początkowy adres danych	'1'	'0'	llość danych (liczone jako bajt) Początkowy	'0'	'0'	Początkowy adres danych	'1'	'0'	Początkowy adres danych	'1'	'0'
	'0'	'8'		'4'	'2'		'0'	'8'		'0'	'8'
	'0'	'1'		'0'	'1'		'0'	'1'		'0'	'1'
	'0'	ʻ0'	adres danych	'1'	'7'		'1'	'0'		'1'	'0'
llość danych (word/Bit)	'0'	'0'	1000H/081xH	'F'	'0'	Zawart. danych	'0'	'F'	Zawart. danych	'0'	'F'
	'0'	'0'		'4'	'1'		'3'	'F'		'3'	'F'
	'0'	'0'		'0'			'E'	'0'		'E'	'0'
	'2'	'9'	Dana adresowana	'0'			'8'	'0'		'8'	'0'
LRC 1	'E'	'D'	1001H	'0'		LRC1	'F'	'E'	LRC1	'F'	'E'
LRC 0	'A'	'C'		'0'		LRC 0	'D'	'3'	LRC 0	'D'	'3'
END 1	CR	CR	LRC 1	'0'	'E'	END 1	CR	CR	END 1	CR	CR
END 0	LF	LF	LRC 0	'3'	'3'	END 0	LF	LF	END 0	LF	LF
			END 1	CR	CR						
			END 0	LF	LF						

LRC suma kontrolna:

Kontrola LRC jest sumą dodaną z "Address" do "Data content". Na przykład, 01H + 03H + 10+ 00H + 00H + 02H = 16H, następnie weź dopełnienie z 2, EAH.

Tryb RTU

Komenda odczytu		Odpowiedź komendy odczytu		Komenda zapisu		Odpowiedź komendy zapisu					
ADR	01H	01H	ADR	01H	01H	ADR	01H	01H	ADR	01H	01H
CMD	03H	02H	CMD	03H	02H	CMD	06H	05H	CMD	06H	05H
Początkowy	10H	08H	llość danych			Początkowy	10H	08H	Początkowy	10H	08H
adres danych	00H	10H	(liczone w bajtach)	04H	02H	adres danych	01H	10H	adres danych	01H	10H
llość danych	00H	00H	Początkowy	01H	17H		03H	FFH		03H	FFH
(word/Bit)	02H	09H	adres danych 1000H/081xH	F4H	01H	Zawart. danych	20H	00H	Zawart. danych	20H	00H
		BB									
CRC 1	C0H	H	Dana adresowana	03H		CRC 1	DDH	8FH	CRC 1	DDH	8FH
CRC 0	CBH	A9H	1001H	20H		CRC 0	E2H	9FH	CRC 0	E2H	9FH
			CRC 1	BBH	77H						
			CRC 0	15H	88H						

CRC (Cykliczna kontrola nadmiarowa) jest uzyskiwana w nestępujących krokach.

1. Załaduj do 16-bitowego rejestru FFFFH jako rejestr CRC.

- 2. Wykonaj wyłączną operację OR pierwszego bajtu danych i niskiego bajtu rejestru CRC, umieść wynik operacji z powrotem w rejestrze CRC.
- 3. Przesunięcie bitów w prawo w rejestrze CRC i wypełnienie wysokich bitów "0". Sprawdź usunięty najniższy bit.
- 4. Jeśli usunięty najniższy bit to "0", powtórz krok 3. W przeciwnym razie wykonaj wyłączną operację OR rejestru CRC i wartości A001H i umieść wynik operacji z powrotem w rejestrze CRC.
- 5. Powtórz kroki 3 i 4 dopóki 8 bitów (1 bajt) zostanie przesuniętych w prawo.
- 6. Powtórz kroki 2 i 5 i oblicz wszystkie bity, aby uzyskać kontrolę CRC.

Należy pamiętać o kolejności wysyłania wysokich/niskich bajtów w rejestrze CRC.

Wcięcie panelu

Wzór	Wcięcie panelu(W * H)	Model	Wcięcie panelu (W * H)
4848 (DT320)	45mm * 45mm	7272 (DT330)	68mm * 68mm
4896 (DT340)	44.5mm * 91.5mm	9696 (DT360)	91mm * 91mm

Podczas instalacji regulatora temperatury, należy zachować pewną przestrzeń otoczenia(jak pokazano poniżej), aby zapewnić właściwe chłodzenie oraz łatwe wyjmowanie akcesoriów montażowych.

• Co najmniej 60 mm miejsca z górnej i dolnej strony oraz 40 mm miejsca z lewej i prawej strony.

Montaż i instalacja wspornika

Seria DT320:

Krok 1: Wsuń kontroler przez wycięcie panelu.

Krok 2: Włóż nakrętkę M3*0.5 do otworu w górnej części wspornika montażowego i włożyć śrubę montażową M3*0.5*30mm w wspornik montażowy. Włóż wspornik montażowy do rowka montażowego po prawej i lewej stronie sterownika i wepchnij wspornik do przodu, aż nie zatrzyma się na ścianie panelu.

Krok 3: Dokręć śruby na wsporniku, aby zabezpieczyć kontroler(Moment obrotowy śruby powinien wynosić od 0.4 do 0.5N.m).

Seria DT330:

Krok 1: Wsuń kontroler przez wycięcie panelu.

Krok 2: Włóż nakrętkę M3*0.5 do otworu w górnej części wspornika montażowego i włożyć śrubę montażową M3*0.5*30mm w wspornik montażowy. Włóż wspornik montażowy do rowka montażowego z górnej i dolnej strony sterownika i wepchnij wspornik do przodu, aż nie zatrzyma się na ścianie panelu.

Krok 3: Dokręć śruby na wsporniku, aby zabezpieczyć kontroler(Moment obrotowy śruby powinien wynosić od 0.4 do 0.5N.m).

Seria DT340:

Krok 1: Wsuń kontroler przez wycięcie panelu.

Krok 2: Włóż nakrętkę M3*0.5 do otworu w górnej części wspornika montażowego i włożyć śrubę montażową M3*0.5*30mm w wspornik montażowy. Włóż wspornik montażowy do rowka montażowego z górnej i dolnej strony sterownika i wepchnij wspornik do przodu, aż nie zatrzyma się na ścianie panelu.

Krok 3: Dokręć śruby na wsporniku, aby zabezpieczyć kontroler(Moment obrotowy śruby powinien wynosić od 0.4 do 0.5N.m).

Seria DT360:

Krok 1: Wsuń kontroler przez wycięcie panelu.

Krok 2: Włóż nakrętkę M3*0.5 do otworu w górnej części wspornika montażowego i włożyć śrubę montażową M3*0.5*30mm w wspornik montażowy. Włóż wspornik montażowy do rowka montażowego z górnej i dolnej strony sterownika i wepchnij wspornik do przodu, aż nie zatrzyma się na ścianie panelu.

Krok 3: Dokręć śruby na wsporniku, aby zabezpieczyć kontroler(Moment obrotowy śruby powinien wynosić od 0.4 do 0.5N.m).

Schematy połączeń i środki ostrożności

- > Dokręć śruby momentem obrotowym od 0.4 do 0.5N.m.
- > W celu uniknięcia zakłóceń sygnału, zaleca się, aby kabel zasilania i kabel sygnałowy przebiegały oddzielnie.
- Należy używać solidnych przewodów od 14AWG/2C do 22AWG/2C. Maksymalnie 300V oraz temperatura pracy do105°C dla wejściowych pinów zasilania.
- Symbole ostrzegawcze Symbole ostrzegawcz
- Należy używać wyjść przekaźnikowych w ramach obciążenia znamionowego.W przeciwnym razie kabel oraz zacisk mogą nagrzać się na skutek przeciążenia. Jeśli temperatura przekroczy 50°C, może dojść do spalenia kontaktu.
- Należy używać zacisków maksymalnie 5.8 mm.

DC model wiring diagram

AC model wiring diagram

DT330CA-C213; DT330VA-V213; DT330LA-L213	DT330LA-R212; DT330CA-R212; DT330VA-R212	DT330LA-R222; DT330CA-R222; DT330VA-R222
$\begin{array}{c} \text{AC 100-240V} \\ \text{50/60 Hz} \\ \text{5VA} \\ \text{VA} \\ \text{ALM 1} \\ \begin{array}{c} \text{NO 3} \\ \text{COM} \\ \text{4} \\ \text{13} \end{array} \\ \begin{array}{c} \text{EV2} \\ \text{EV2} \end{array}$	AC 100-240V 50/60 Hz 6VA ALM 1 COM 4 (13) ALM 1 COM 4 (13) ALM 1	AC 100-240V 50/60 Hz 5VA <u>N</u> (2)(1) D+ RS-485 5VA <u>N</u> (2)(1) D+ D+ ALM 1 COM(4)(13)
OUT 1 6 15 +	OUT 1 6 14 CT1 - 6 15 - 0 - 7 16 NO	
DT330RA-0	DT330RA-0200	DT330RA
AC 100~240V 50/60 Hz 5VA L (1) (10 N (2) (1) N (2) (1)	AC 100-240V 50/60 Hz 5VA L 1 10 P- RS485 SVA N 2 11 D+ D+	AC 100-240V 50/60 Hz SVA L 1 10 N 2 11 N 2 11
ALM 1 (3) (12) ALM 1 (3) (13)	ALM 1 (3) (12) ALM 1 (3)	ALM 1 5 COM 4 (13)
OUT 15 (14)		
DT330RA-R112	DT330VA-0; DT330CA-0	DT330VA-0003; DT330CA-0003;
AC 100~240V 50/60 Hz 5VA L 1 10 EV3 EV3	AC 100~240V 50/60 Hz 5VA L (1) (10 N (2) (1)	AC 100-240V L 1 10 50/60 Hz N 0 40
ALM 1 COM 4 13 EV2		
DT330VA-0030; DT330CA-0030; DT330LA-0030	DT330VA-0200; DT330CA-0200; DT330LA-0200	DT330VA; DT330CA; DT330LA
AC 100~240V 50/60 Hz 5VA NO NO NO NO NO NO NO NO NO NO	AC 100-240V 50/60 Hz 5VA ND ND ND D+	AC 100-240V 50/60 Hz 5VA NO 2 (1)
ALM 1 5 COM 4 13 +	ALM 1 (3) (12) ALM 1 (3)	ALM 1 (3)(12)

DT330VA-R011; DT330CA-R011;	DT330VA-R211; DT330CA-R211;	DT330VA-V231; DT330CA-C231;
DT330LA-R011	DT330LA-R211	DT330LA-L231
AC 100-240V 50/60 Hz 5VA L 1 10 N 2 11	AC 100-240V 50/60 Hz SVA L 1 10 D- N 2 11 D+	AC 100~240V 50/60 Hz 5VA L 1 10 D- N 2 11 B-485 5VA
ALM 1 (COM 4 13 EV2		
DT340CA-C213; DT360CA-C213; DT340VA-V213; DT360VA-V213	DT340LA-R212; DT360VA-R212; DT340CA-R212; DT360CA-R212; DT340VA-R212	DT340LA-R222; DT360VA-R222; DT340CA-R222; DT360CA-R222; DT340VA-R222
AC 100-240V 50/50 Hz SVA NO (2) (1) (3) D- RS 465 D- D- D- D- D- D- D- D- D- D-	AC 103-240V 50/60 Hz 5VA NO NO NO NO NO NO NO NO NO NO	AC 180~240V 50/60 Hz 50/A NO (2) (4) D+ NO (2) (4) D+
ALM 1 (COM 4 (16) (17)	ALM 1 (16) (17)	ALM 1 (COM 4 (6)
DT340RA-0	DT340RA; DT360RA	DT340RA-R112; DT360RA-R112
AC 100-240V 50/50 Hz 5VA L 1 13 N 2 14	AC 100-240V 50/60 Hz 5VA N 2 14	AC 100-240V 50/50 Hz SVA
	ALM 1 (COM 4 (6)	
OUT 15 COM 9 (2)	OUT 1 <u>COM</u> (1) (2) (2)	OUT 1 (COM 9 21) CT1 (10) (22) NO

Prodcut Service

If you need more temperature controller information and technical support, please contact following website:

http://www.deltaww.com/ to download and contact region service window.

Delta Electronics, Inc. 18 Xinglong Road, Taoyuan District, Taoyuan City 33068, Taiwan, R.O.C.